cho tam giác MNP vuông tại M có MN=12cm;MP=16cm.kẻ đường cao MH a)chứng minh MHN đồng dạng PMN
b)vẽ đường phân giác MD; tính ND,PD
giải giúp em với ạ em cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMNP vuông tại M và ΔHNM vuông tại H có
góc N chung
DO đó: ΔMNP∼ΔHNM
Suy ra: NM/NH=NP/NM
hay \(NM^2=NH\cdot NP\)
b: NP=13cm
\(NH=\dfrac{MN^2}{NP}=\dfrac{25}{13}\left(cm\right)\)
a: Ta có: ΔMNP vuông tại M
=>\(MN^2+MP^2=NP^2\)
=>\(NP^2=9^2+12^2=225\)
=>\(NP=\sqrt{225}=15\left(cm\right)\)
Xét ΔMNP có MI là phân giác
nên \(\dfrac{IN}{MN}=\dfrac{IP}{MP}\)
=>\(\dfrac{IN}{9}=\dfrac{IP}{12}\)
=>\(\dfrac{IN}{3}=\dfrac{IP}{4}\)
mà IN+IP=NP=5cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{IN}{3}=\dfrac{IP}{4}=\dfrac{IN+IP}{3+4}=\dfrac{5}{7}\)
=>\(IN=3\cdot\dfrac{5}{7}=\dfrac{15}{7}\left(cm\right);IP=5\cdot\dfrac{4}{7}=\dfrac{20}{7}\left(cm\right)\)
b: Diện tích tam giác MNP là:
\(S_{MNP}=\dfrac{1}{2}\cdot MN\cdot MP=\dfrac{1}{2}\cdot9\cdot12=54\left(cm^2\right)\)
Ta có: \(\dfrac{IN}{3}=\dfrac{IP}{4}\)
=>\(\dfrac{IN}{IP}=\dfrac{3}{4}\)
=>\(\dfrac{IN}{IP+IN}=\dfrac{3}{7}\)
=>\(\dfrac{IN}{PN}=\dfrac{3}{7}\)
=>\(S_{MNI}=\dfrac{3}{7}\cdot S_{MNP}=\dfrac{3}{7}\cdot54=\dfrac{162}{7}\left(cm^2\right)\)
Sửa đề: Đường cao MH
Áp dụng HTL:
\(MH^2=NH.HP\)
\(\Rightarrow MH=\sqrt{NH.HP}=\sqrt{4.12}=4\sqrt{3}\left(cm\right)\)
\(\left\{{}\begin{matrix}MN^2=NH.NP=4.\left(12+4\right)=64\\MP^2=HP.NP=12\left(12+4\right)=192\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}MN=8\left(cm\right)\\MP=8\sqrt{3}\left(cm\right)\end{matrix}\right.\)
M P N K 15 12 16
Xét tam giác MNK có góc MKN = 90 o
=> MN2= MK2+ NK2 ( theo đ/l py ta go )
=> 152=122 + NK2
=> NK2= 225-144
=> NK2= 81
=> NK= 9 ( cm )
Ta có NK+PK= PN
=> PN= 9+ 16
=> PN= 25 ( cm)
Xét tam giác MNP có góc PMN = 90o
=> PN2= MN2+ MP2 ( THeo đ/l pytago)
=> MP2= PN2-MN2
=> MP2=625 - 225
=> MP2= 400
=> MP=20 (cm)
Bài 2:
a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
c: \(BC=\sqrt{5^2+12^2}=13\left(cm\right)\)
Xét tam giác MNP vuông tại M (gt) có:
NP2 = MN2 + MP2 (Định lí Py-ta-go)
132 = 122 + MP2
MP2 = 169 - 144
MP2 = 25
MP = 5 (cm)
Vậy : SMPKN = 12 . 5 = 60 (cm2)
a) Xét 2 tam giac vuong MHN và MPN, ta có:
\(\widehat{HMN}=\widehat{MPN}\) (cùng phụ với góc HMP)
=> \(\Delta HMN\sim\Delta MPN\left(g.g\right)\)
b) Áp dụng định lí pitago ta tính dc NP = 20 (cm)
Áp dụng tính chất đường phân giác trong tam giác MNP ta có:
\(\dfrac{DN}{DP}=\dfrac{MN}{MP}=\dfrac{12}{16}=\dfrac{3}{4}\) <=> \(\dfrac{DN}{3}=\dfrac{DP}{4}=\dfrac{DN+DP}{3+4}=\dfrac{20}{7}\)
=> DN = 60/7 (cm) và DP = 20/7 (cm)