K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2022

a, Ta có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{6}{8}=\dfrac{7,5}{10}=\dfrac{3}{4}\)

=> MN // BC (Ta lét đảo) 

b, Vì MN // BC 

Theo hệ quả Ta lét \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\Leftrightarrow\dfrac{6}{8}=\dfrac{MN}{12}\Leftrightarrow MN=9cm\)

20 tháng 2 2019

Ta có:  A B 2 + A C 2 = B C 2 ( 3 2 + 4 2 = 5 2 = 25 )

Suy ra: tam giác ABC vuông tại A

Xét Δ ABC và Δ MNP có:

Bài tập: Các trường hợp đồng dạng của tam giác vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Suy ra: Δ ABC và ΔMNP đồng dạng với nhau.

Áp dụng định lí Pyta go vào tam giác MNP có:

N P 2 = M N 2 + M P 2 = 6 2 + 8 2 = 100 nên NP = 10cm

Chọn đáp án D

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: \(MN=\dfrac{BC}{2}=6\left(cm\right)\)

Xét ΔABC có 

M là trung điểm của AB

P là trung điểm của BC

Do đó: MP là đường trung bình của ΔBAC

Suy ra: \(MP=\dfrac{AC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Xét ΔABC có 

N là trung điểm của AC

P là trung điểm của BC

Do đó: NP là đường trung bình của ΔBAC

Suy ra: \(NP=\dfrac{AB}{2}=4\left(cm\right)\)

Chu vi tam giác MNP là:

C=MN+MP+NP=4+5+6=15(cm)

9 tháng 9 2021

\(a,\) \(\left\{{}\begin{matrix}AM=MB\\BN=NC\end{matrix}\right.\Rightarrow\) MN là đường trung bình tam giác ABC 

\(\Rightarrow MN//AC\Rightarrow MN\perp AB\left(AC\perp AB\right)\)

\(b,MN=\dfrac{1}{2}AC\left(tính.chất.đtb\right)\)

Mà \(AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-12^2}=5\left(cm\right)\left(pytago\right)\)

\(\Rightarrow MN=\dfrac{5}{2}\left(cm\right)\)

\(c,\left\{{}\begin{matrix}AM=MB\\AP=PC\end{matrix}\right.\Rightarrow\) MP là đường trung bình tam giác ABC

\(\Rightarrow MP=\dfrac{1}{2}BC=\dfrac{13}{2}\left(cm\right)\)

\(\left\{{}\begin{matrix}AP=PC\\BN=NC\end{matrix}\right.\Rightarrow\) NP là đường trung bình tam giác ABC

\(\Rightarrow NP=\dfrac{1}{2}AB=6\left(cm\right)\)

a: Xét ΔBAC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)

hay MN\(\perp\)AB

b: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay AC=5(cm)

\(\Leftrightarrow MN=2.5\left(cm\right)\)

Bài 2: 

a: AE=AC-CE=16-13=3(cm)

AD=AB-BD=8-2=6(cm)

Xét ΔAED và ΔABC có

AE/AB=AD/AC

\(\widehat{A}\) chung

Do đó: ΔAED∼ΔABC

b: Ta có: ΔAED∼ΔABC

nên AE/AB=AD/AC

hay AB/AC=AE/AD

Xét ΔABE và ΔACD có

AB/AC=AE/AD

\(\widehat{BAE}\) chung

Do đó: ΔABE∼ΔACD

Suy ra: \(\widehat{ABE}=\widehat{ACD}\)

27 tháng 3 2021

a/ \(BD\) là đường phân giác \(\widehat{BAC}\)

\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)

\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)

\(\to\begin{cases}DA=3\\DC=5\end{cases}\)

b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)

\(\to AB.AC=AH.BC\)

\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot10=6\cdot8=48\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

20 tháng 2 2022

bạn cần bài nào

20 tháng 2 2022

2 BÀI CHẢ BT HỎI BÀI NÀO