Cho đa thức:P(x)=ax+b(a,b thuộc Z,a khác 0).Chứng minh rằng;IP(2013-P(1)I>=2102
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(P\left(x\right)=ax+b\)
\(\Rightarrow\hept{\begin{cases}P\left(2018\right)=a.2018+b\\P\left(1\right)=a.1+b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P\left(2018\right)=2018a+b\\P\left(1\right)=a+b\end{cases}}\)
\(\Rightarrow P\left(2018\right)-P\left(1\right)=2018a+b-\left(a+b\right)\)
\(\Rightarrow P\left(2018\right)-P\left(1\right)=2017a\)
\(\Rightarrow\left|P\left(2018\right)-P\left(1\right)\right|=\left|2017a\right|\)
Do a khác 0
\(\Rightarrow\left|2017a\right|\ge2017\)
\(\Rightarrow\left|P\left(2018\right)-P\left(1\right)\right|\ge2017\)
Vậy \(\left|P\left(2018\right)-P\left(1\right)\right|\ge2017\left(đpcm\right)\)
\(\left\{{}\begin{matrix}x^2-yz=a\\y^2-xz=b\\z^2-xy=c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^3-xyz=ax\\y^3-xyz=by\\z^3-xyz=cz\end{matrix}\right.\) \(\Rightarrow ax+by+cz=x^3+y^3+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)⋮\left(x+y+z\right)\)
Lời giải:
$f(x)=x^2+ax+b$
$f(f(x)+x)=[f(x)+x]^2+a[f(x)+x]+b$
$=f(x)^2+x^2+2xf(x)+af(x)+ax+b$
$=f(x)^2+2xf(x)+af(x)+f(x)$
$=f(x)[f(x)+2x+a+1]$
$=f(x)(x^2+ax+b+2x+a+1)$
$=f(x)[(x+1)^2+a(x+1)+b]=f(x)f(x+1)$
Thay $x=2019$ vô thì:
$f(f(2019)+2019)=f(2019).f(2020)$. Do đó tồn tại số $k=f(2019)+2019\in\mathbb{Z}$ thỏa mãn đkđb.
Ta có đpcm.