K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2016

 với mọi giá trị của x thì ax^2 + bx + c = 0 
nên ta có thể lấy giá trị của x bất kỳ 
với x = 0 => ax^2 + bx + c = 0 <=> c = 0 => ax^2 + bx = 0 
với x = 1 => ax^2 + bx = 0 <=> a + b = 0 (1) 
với x = -1 => ax^2 + bx = 0 <=> a-b = 0 (2) 
từ (1) và (2) => 2a = 0 => a = 0 
=> b = 0 
vậy a = b = c = 0

24 tháng 6 2016

 với mọi giá trị của x thì ax^2 + bx + c = 0 
nên ta có thể lấy giá trị của x bất kỳ 
với x = 0 => ax^2 + bx + c = 0 <=> c = 0 => ax^2 + bx = 0 
với x = 1 => ax^2 + bx = 0 <=> a + b = 0 (1) 
với x = -1 => ax^2 + bx = 0 <=> a-b = 0 (2) 
từ (1) và (2) => 2a = 0 => a = 0 
=> b = 0 
vậy a = b = c = 0

1 tháng 4 2019

Bài làm

a) Giả sử P(x) có một nghiệm là 1 thì:

p(1)=a*1^2+b*1+c

      =a+b+c

Mà a+b+c=0

=>p(1)=0

=>đa thức p(x) có 1 nghiệm là 1(ĐPCM)

b)Giả sử P(x) có 1 nghiệm là -1 thì

p(-1)=a*(-1)^2+b*(-1)+c

       =a-b+c

Mà a-b+c=0

=>p(-1)=0

=> đa thức p(x) có một nghiệm là -1(ĐPCM)

c)TA có:

p(1)=a*1^2+b*1+c=a+b+c

p(-1)=a.(-1)^2+b*(-1)+c=a-b+c

Mà p(1)=p(-1)

=>a+b+c=a-b+c

=>a+b+c-a+b-c=0

=>2b=0  =>b=0

+) Với b=0 =>p(x)=ax^2+c (1)

                   =>p(-x)=a*(-x)^2+c=a*x+c  (2)

Từ (1)và (2) =>p(x)=p(-x) (ĐPCM)

8 tháng 3 2019

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

8 tháng 3 2019

1.b) Y chang câu a!

29 tháng 11 2023

Bài 4:

\(f\left(5\right)-f\left(4\right)=2019\)

=>\(125a+25b+25c+d-64a-16b-4c-d=2019\)

=>\(61a+9b+21c=2019\)

\(f\left(7\right)-f\left(2\right)\)

\(=343a+49b+7c+d-8a-4b-2c-d\)

\(=335a+45b+5c\)

\(=5\left(61a+9b+21c\right)=5\cdot2019\) là hợp số