Cho △ABC nhọn (AB < AC). Dựng 3 đường cao AD; BE và CF đồng quy tại H. Chứng minh \(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\)
giải giúp e với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\widehat{ADB}\) là góc ngoài tại đỉnh D của ΔDBC(DA và DC là hai tia đối nhau)
nên \(\widehat{ADB}=\widehat{DBC}+\widehat{C}\)(định lí góc ngoài của tam giác)
hay \(\widehat{C}=\widehat{ADB}-\widehat{DBC}\)
hay \(\widehat{C}=\widehat{MDB}-\widehat{DBC}\)(1)
Ta có: Đường trung trực của BD cắt AC tại M(gt)
⇔M nằm trên đường trung trực của BD
⇔MB=MD(tính chất đường trung trực của một đoạn thẳng)
Xét ΔMBD có MB=MD(cmt)
nên ΔMBD cân tại M(định nghĩa tam giác cân)
⇒\(\widehat{MBD}=\widehat{MDB}\)(hai góc ở đáy)(2)
Từ (1) và (2) suy ra \(\widehat{C}=\widehat{MBD}-\widehat{ABD}\)(3)
Ta có: \(\widehat{ABD}+\widehat{MBA}=\widehat{MBD}\)(tia BA nằm giữa hai tia BD và BM)
hay \(\widehat{MBA}=\widehat{MBD}-\widehat{ABD}\)(4)
Từ (3) và (4) suy ra \(\widehat{C}=\widehat{MBA}\)
Xét ΔMAB và ΔMBC có
\(\widehat{MBA}=\widehat{MCB}\)(cmt)
\(\widehat{AMB}\) chung
Do đó: ΔMAB∼ΔMBC(g-g)
a) Vì A thuộc đường trung trực của HD nên suy ra :AD=AH (1)
Vì A thuộc đường trung trực của HE nên suy ra :AE=AH (2)
Từ (1) và (2) ta có: AD=AH=AE
=> AD=AE(đpcm)
b) Kẻ I với H ; K với H
Theo câu a ta có AD=AE
=>Tam giác ADE cân tại A => góc ADE =góc AED
Vì AD=AH nên =>tam giác ADH cân tại A
=>góc ADH =góc AHD (1)
Vì AE=AH nên => tam giác AHE cân tại A
=> góc AHE=góc AEH (2)
Vì K thuộc đường trung trực của HE
=> KE = KH => tam giác KHE cân tại K
=> góc KHE =góc KEH (3)
Vì I thuộc đường trung trực của HD
=> ID = IH => tam giác IDH cân tại I
=> góc IDH =góc IHD (4)
Từ (1)và (4) =>góc ADE=AHI
Từ (2)và (4) =>góc AED=AHK
Mà ADE=AED(cmt) => AHI=AHK
Vậy suy ra HA là tia p/g của góc IHK
a) Vì A thuộc đường trung trực của HD nên suy ra :AD=AH (1)
Vì A thuộc đường trung trực của HE nên suy ra :AE=AH (2)
Từ (1) và (2) ta có: AD=AH=AE
=> AD=AE(đpcm)
b) Kẻ I với H ; K với H
Theo câu a ta có AD=AE
=>Tam giác ADE cân tại A => góc ADE =góc AED
Vì AD=AH nên =>tam giác ADH cân tại A
=>góc ADH =góc AHD (1)
Vì AE=AH nên => tam giác AHE cân tại A
=> góc AHE=góc AEH (2)
Vì K thuộc đường trung trực của HE
=> KE = KH => tam giác KHE cân tại K
=> góc KHE =góc KEH (3)
Vì I thuộc đường trung trực của HD
=> ID = IH => tam giác IDH cân tại I
=> góc IDH =góc IHD (4)
Từ (1)và (4) =>góc ADE=AHI
Từ (2)và (4) =>góc AED=AHK
Mà ADE=AED(cmt) => AHI=AHK
Vậy suy ra HA là tia p/g của góc IHK
a) Vì A thuộc đường trung trực của HD nên suy ra :AD=AH (1)
Vì A thuộc đường trung trực của HE nên suy ra :AE=AH (2)
Từ (1) và (2) ta có: AD=AH=AE
=> AD=AE(đpcm)
b) Kẻ I với H ; K với H
Theo câu a ta có AD=AE
=>Tam giác ADE cân tại A => góc ADE =góc AED
Vì AD=AH nên =>tam giác ADH cân tại A
=>góc ADH =góc AHD (1)
Vì AE=AH nên => tam giác AHE cân tại A
=> góc AHE=góc AEH (2)
Vì K thuộc đường trung trực của HE
=> KE = KH => tam giác KHE cân tại K
=> góc KHE =góc KEH (3)
Vì I thuộc đường trung trực của HD
=> ID = IH => tam giác IDH cân tại I
=> góc IDH =góc IHD (4)
Từ (1)và (4) =>góc ADE=AHI
Từ (2)và (4) =>góc AED=AHK
Mà ADE=AED(cmt) => AHI=AHK
Vậy suy ra HA là tia p/g của góc IHK
a: Xét ΔADC vuông tại D và ΔBEC vuông tại E có
góc C chung
Do đó: ΔADC\(\sim\)ΔBEC
b: Xét ΔHAE vuông tại E và ΔHBD vuông tại D có
\(\widehat{AHE}=\widehat{BHD}\)
Do đó: ΔHAE\(\sim\)ΔHBD
Suy ra: HA/HB=HE/HD
hay \(HA\cdot HD=HE\cdot HB\)
\(Ta.có:\\ S_{HBC}=\dfrac{1}{2}.BH.CD\\ S_{ABC}=\dfrac{1}{2}.BC.AD\\ \Rightarrow\dfrac{HD}{DA}=\dfrac{S_{HBC}}{S_{ABC}}\\ Tương.tự:\dfrac{HE}{BE}=\dfrac{S_{AHC}}{S_{ABC}};\dfrac{HF}{CF}=\dfrac{S_{ABH}}{S_{ABc}}\\ Vậy.\dfrac{HD}{AD}+\dfrac{HF}{CF}+\dfrac{HE}{BE}=\dfrac{S_{BCH}+S_{ACH}+S_{ABH}}{S_{ABC}}=1\)
cho xin lì xì :(