Cho ABC có AB = 3cm; AC = 4cm; BC = 5cm.
a, Chứng tỏ tam giác ABC vuông tại A
b, Vẽ phân giác BD (D thuộc AC), từ D vẽ DE ⊥ BC (E ϵ BC), Chứng minh DA = DE.
c, ED cắt AB tại F. Chứng minh △ADF = △EDC rồi suy ra DF > DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có \(BC^2=AB^2+AC^2\Leftrightarrow25=9+16\)( luôn đúng )
Vậy tam giác ABC vuông tại A(pytago đảo)
b, Xét tam giác BAD và tam giác BED có
^ABD = ^EBD ; BD _ chung
Vậy tam giác BAD = tam giác BED ( ch-gn)
=> DA = DE ( 2 cạnh tương ứng )
c, Xét tam giác ADF và tam giác EDC có
DA = DE ; ^ADF = ^EDC ( đối đỉnh )
Vậy tam giác ADF = tam giác EDC ( ch-cgv)
=> DF = DC ( 2 cạnh tương ứng )
mà DC > DE ( cạnh huyền lớn hơn cạnh góc vuông tam giác DEC vuông tại E )
=> DF > DE
chuẩn lun giỏi quá cho 1 like