Cho 12 Số tự nhiên bất kì lấy các giá trị thuộc {1;2;3} ghép 2 số cào 1 cặp ta đc 6 cặp, CMR tồn tại 2 cặp có tổng các chữ số trong cặp = nhau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét k = 100 ta dễ dàng tìm được một tập hợp n số trong đó không số nào là bội của số kia
\(\left\{101;102;...;200\right\}\)
Ta chứng minh với k = 101 thì bài toán đúng.
Ta lấy ra ngẫu nhiên 101 số từ tập hợp 200 số đã cho \(\left\{a_1;a_2;...;a_{101}\right\}\)
Ta biểu diễn chúng thành dạng:
\(a_1=2^{x_1}.b_1;a_2=2^{x_2}.b_2;...;a_{101}=2^{x_{101}}.b_{101}\)
với \(x_1;x_2;...;x_{101}\)là các số tự nhiên và \(b_1;b_2;...;b_{101}\)là các số lẻ.
Ta thấy từ 1 đến 199 có 100 số lẻ vì vậy trong 101 số đã cho tồn tại 2 số m > n sao cho bm = bn.Hai số này là bội của nhau.
Vậy giá trị nhỏ nhất của k là 101
Nguồn: Câu hỏi của Đỗ Hoàng Phương - Toán lớp 7 | Học trực tuyến
xét k=100
dễ dàng tìm được tập số có n số mà trong đó ko có số nào là bội của số kia \(\left\{101,102,...,200\right\}\)
ta chứng minh k=101 thì bài toán đúng
ta lấy ngẫu nhiên 101 số từ tập 200 số đã cho
\(\left\{a_1,a_2,...,a_{101}\right\}\)
ta biểu diễn 101 số này thành dạng
\(a_1=2^{x_1}.b_1;a_2=2^{x_2}.b_2\)
.....
\(a_{101}=2^{x_{101}}.b_{101}\)
zới \(x_1,x_2,...,x_{101}\)là các số tự nhiên . \(b_1,b_2,...,b_{101}\)là các số lẻ zà \(1\le b_1,b_2,...,b_{101}\)
ta thấy rằng từ 1 đến 199 có tất cả 100 số lẻ , zì thế trong 101 số đã chọn tồn tại\(m>n\)sao cho \(b_m=b_n\). hai số này là bội của nhau
zậy k nhỏ nhất là 101 thì thỏa mãn yêu cầu đề bài
Gọi 4 số cần tìm là a, b, c, d
với 0<a<b<c<d
Vì tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3 nên các số a, b, c, d khi chia cho 2 hoặc 3 đều phải có cùng số dư
Để a+b+c+d có giá trị nhỏ nhất thì a, b, c, d phải nhỏ nhất và chia 2 hoặc 3 dư 1
Suy ra: a=1
b=7
c=13
d=19
Vậy giá trị nhỏ nhất của tổng 4 số này là: 1+7+13+19=40
Nhớ k nha~
Ta cần chứng minh rằng: p = (a − b) (a − c)(a − d) (b − c) (b − d) (c − d) chia hết cho 12.
Nhận xét rằng khi chia một số cho 3 thì số dư là một trong ba số 0, 1, 2. Xét tính chia hết của p với 3 và 4, riêng rẽ. Theo nguyên lý Dirichlet, tồn tại ít nhất hai số nguyên trong bốn số a, b, c, d cho cùng số dư khi chia cho 3.
Hiệu của những hai số này chia hết cho 3. Do đó, p chia hết cho 3. Nếu tồn tại hai trong bốn số nguyên a,b,c,d cho cùng số dư khi chia cho 4, thì p chia hết cho 4, theo cách lập luận như trên.
Nếu không, các số dư của a, b, c, d khi chia cho 4 sẽ khác nhau. Nhưng khi đó, hai trong bốn số cùng tính chẵn lẻ, cặp còn lại cũng cùng tính chẵn lẻ, thì hiệu của chúng đều chẵn. Tích của hai số chẵn chia hết cho 4. Do đó, p chia hết cho 4. Vậy, p chia hết cho 12.