Trong không gian với hệ tọa độ Oxyz, xét mặt cầu (S) đi qua hai điểm A(1;2;1); B(3;2;3) , có tâm thuộc mặt phẳng (P):x-y-3=0, đồng thời có bán kính nhỏ nhất, hãy tính bán kính R thuộc mặt cầu (S)?
A. 1
B. 2
C. 2
D. 2 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Cách 1: Gọi I(a;b;c) là tâm của mặt cầu (S), vì I ∈ ( P ) ⇒ I ( a ; a + 2 ; c )
Ta có R = I A = I B ⇔ a - 1 2 + a - 4 2 + c - 2 2 = a - 3 2 + a + 2 2 + c 2 ⇔ c = 2 - 2 a
Khi đó R = I A = a - 1 2 + a - 4 2 + 4 a 2 = 6 a 2 - 10 a + 17 = 6 x - 5 6 2 + 77 6 ≥ 462 6
Vậy bán kính nhỏ nhất của mặt cầu (S) là R m i n = 462 6
Cách 2: Tham khảo hình bên
Ta có I thuộc giao tuyến mặt phẳng trung trực AB và P ⇒ I M ≥ M H
⇒ R ≥ H A ⇒ R m i n = H A với H là hình chiếu của M trên giao tuyến ⇒ R m i n = 462 6
Đáp án A
Ta có I M = 2 − 1 2 + 2 − 0 2 + − 1 + 3 2 = 3 . Mặt cầu (S) có tâm I 1 ; 0 ; − 3 và bán kính R = I M = 3 nên có phương trình là x − 1 2 + y 2 + z + 3 2 = 9 .