K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

Đáp án B

Cách 1: Gọi I(a;b;c) là tâm của mặt cầu (S), vì I ∈ ( P ) ⇒ I ( a ; a + 2 ; c )  

Ta có R = I A = I B ⇔ a - 1 2 + a - 4 2 + c - 2 2 = a - 3 2 + a + 2 2 + c 2 ⇔ c = 2 - 2 a  

Khi đó  R = I A = a - 1 2 + a - 4 2 + 4 a 2 = 6 a 2 - 10 a + 17 = 6 x - 5 6 2 + 77 6 ≥ 462 6

Vậy bán kính nhỏ nhất của mặt cầu (S) là R m i n = 462 6  

Cách 2: Tham khảo hình bên

Ta có I thuộc giao tuyến mặt phẳng trung trực AB và P ⇒ I M ≥ M H  

⇒ R ≥ H A ⇒ R m i n = H A  với H là hình chiếu của M trên giao tuyến ⇒ R m i n = 462 6

24 tháng 12 2017

Chọn A

Cách giải:

Gọi B là điểm tiếp xúc của mặt cầu (S) và mặt phẳng (P)

=> IB=R

Gọi H là hình chiếu của A xuống (P)

7 tháng 6 2017

Đáp án đúng : B

3 tháng 3 2017

23 tháng 6 2018

Đáp án B

Phương pháp:

- Đưa phương trình mặt phẳng (P) về dạng chỉ còn 1 tham số.

- (P) cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất ó d(I;(P)) max, trong đó: I là tâm mặt cầu (S).

Cách giải:

có tâm  I(1;2;3) và bán kính R = 5

- (P) cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất <=> d(I;(P)) max, trong đó: I là tâm mặt cầu (S).

Ta có

Ta tìm giá trị lớn nhất của Gọi m là giá trị của  với c nào đó.

Ta có:

(*) có nghiệm 

Khi đó 

26 tháng 2 2019

Chọn đáp án A.

17 tháng 9 2019

7 tháng 3 2019

Đáp án A.

28 tháng 9 2017

Đáp án A

7 tháng 4 2018