Cho hàm số: y=(m+1)x+m-1 (d).
a) Xác định m để đồ thị hàm số đã cho đi qua điểm (7;2).
b) Xác định m để đồ thị cắt đường y=3x-4 tại điểm có hoành độ bằng 2.
c) Xác định m để đồ thị đồng qui với hai đường d1: y=2x+1 và d2: y=-x-8.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Thay x=0 và y=-3 vào y=(m-1)x+m+1, ta được:
m+1=-3
hay m=-4
c: Thay x=1 và y=2 vào (d), ta được:
m-1+m+1=2
=>2m=2
hay m=1
d: Để hai đường trùng nhau thì \(\left\{{}\begin{matrix}m-1=2\\m+1=-1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)
e: Để hai đường song song thì m-1=-2
hay m=-1
a: Thay x=7 và y=2 vào (d), ta được:
7(m+1)+m-1=2
=>7m+7+m-1=2
=>8m+6=2
=>8m=-4
=>\(m=-\dfrac{1}{2}\)
b: Thay x=2 vào y=3x-4, ta được:
\(y=3\cdot2-4=2\)
Thay x=2 và y=2 vào (d), ta được:
2(m+1)+m-1=2
=>2m+2+m-1=2
=>3m+1=2
=>3m=1
=>\(m=\dfrac{1}{3}\)
c: Tọa độ giao điểm của hai đường d1 và d2 là:
\(\left\{{}\begin{matrix}2x-1=x-8\\y=2x-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-x=-8+1\\y=2x-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-7\\y=2\left(-7\right)-1=-15\end{matrix}\right.\)
Thay x=-7 và y=-15 vào d, ta được:
\(-7\left(m+1\right)+m-1=-15\)
=>-7m-7+m-1+15=0
=>-6m+7=0
=>-6m=-7
=>\(m=\dfrac{7}{6}\)
Khi m = 2 : y = x + 5
TXĐ : D = R.
Tính biến thiên :
bảng biến thiên :
x | -∞ | +∞ | |
y | -∞ | +∞ |
Bảng giá trị :
x | 0 | -5 |
y | 5 | 0 |
Đồ thị hàm số y = x + 5 là đường thẳng đi qua hai điểm A(0, 5) và B(-5; 0).
b/(dm) đi qua điểm A(4, -1) :
4 = (m -1)(-1) +2m +1
<=> m = 2
3. hàm số nghịch biến khi : a = m – 1 < 0 <=> m < 1
4.(dm) đi qua điểm cố định M(x0, y0) :
Ta được : y0 = (m -1)( x0) +2m +1 luôn đúng mọi m.
<=> (x0 + 2) m = y0 – 1 + x0(*)
(*) luôn đúng mọi m khi :
x0 + 2= 0 và y0 – 1 + x0 = 0
<=> x0 =- 2 và y0 = 3
Vậy : điểm cố định M(-2, 3)
câu a hs bậc nhất vì m-1 khác 0 m khác1
câu b hs đồng biến vì m-1 >0 m>1
a: Thay x=0 và y=3 vào y=(m-1)x+m-5, ta được:
\(0\cdot\left(m-1\right)+m-5=3\)
=>m-5=3
=>m=8
b: Thay x=-1 và y=0 vào y=(m-1)x+m-5, ta được:
\(-\left(m-1\right)+m-5=0\)
=>-m+1+m-5=0
=>-4=0(vô lý)
c: Thay x=0 và y=0 vào y=(m-1)x+m-5, ta được:
\(0\left(m-1\right)+m-5=0\)
=>m-5=0
=>m=5
Để hàm số y=(m-5)x là hàm số bậc nhất thì \(m-5\ne0\)
hay \(m\ne5\)
1) Để hàm số y=(m-5)x đồng biến trên R thì m-5>0
hay m>5
Để hàm số y=(m-5)x nghịch biến trên R thì m-5<0
hay m<5
2) Để đồ thị hàm số y=(m-5)x đi qua A(1;2) thì
Thay x=1 và y=2 vào hàm số y=(m-5)x, ta được:
m-5=2
hay m=7(nhận)
Vậy: Để đồ thị hàm số y=(m-5)x đi qua A(1;2) thì m=7