K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 1 2021

\(f'\left(x\right)=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Để \(g\left(x\right)_{min}>0\Rightarrow f\left(x\right)=0\) vô nghiệm trên đoạn đã cho

\(\Rightarrow\left[{}\begin{matrix}-m< -2\\-m>7\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>2\\m< -7\end{matrix}\right.\)

\(g\left(0\right)=\left|m-1\right|\) ; \(g\left(1\right)=\left|m-2\right|\) ; \(g\left(2\right)=\left|m+7\right|\)

Khi đó \(g\left(x\right)_{min}=min\left\{g\left(0\right);g\left(1\right);g\left(2\right)\right\}=min\left\{\left|m-2\right|;\left|m+7\right|\right\}\)

TH1: \(g\left(x\right)_{min}=g\left(0\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m-2\right|\le\left|m+7\right|\\\left|m-2\right|=2020\\\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ge\dfrac{5}{2}\\\left|m-2\right|=2020\end{matrix}\right.\) \(\Rightarrow m=2022\)

TH2: \(g\left(x\right)_{min}=g\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}\left|m+7\right|\le\left|m-2\right|\\\left|m+7\right|=2020\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\le\dfrac{5}{2}\\\left|m+7\right|=2020\end{matrix}\right.\) \(\Rightarrow m=-2027\)

28 tháng 5 2018

Chọn D

y = f(x) - x 3 - 3 x 2   +   m

Ta có: 

f(-1) = m - 2; f(0) = m; f(1) = m - 4;

Ta thấy  Suy ra yêu cầu bài toán 

17 tháng 9 2017

 

TXĐ: D = R

 

Ta có:

 

Chọn B.

 

10 tháng 4 2019

Đạo hàm f'(x) =  m 2 - m + 1 ( x + 1 ) 2 > 0,  ∀ x   ∈   [ 0 ; 1 ]  

Suy ra hàm số f(x)  đồng biến trên [0; 1] nên min f(x) = f(0) = -m2+m

Theo bài ta có:

-m2+ m= -2 nên m= -1 hoặc m= 2.

Chọn D.

14 tháng 11 2017

+ Đạo hàm f'(x) =  2 - m x 2 ( x + 1 ) x ( x + 1 )

f'(x) = 0  ⇒ x   =   2 m     ↔   x   =   m 2 4   ∈ [   0 ; 4 ] ,  ∀ m > 1

+ Lập bảng biến thiên, ta kết luận được  

m a x [ 0 ; 4 ]   f ( x )   =   f ( 4 m 2 )   =   m 2   + 4

+ Vậy ta cần có  m 2 + 4   <   3  

↔   m < 5   →   m > 1     m   ∈ ( 1 ; 5 )

Chọn C.

30 tháng 10 2019

Đáp án B

20 tháng 8 2019

Chọn B. 

Đặt MFp5Z9vV2j2E.png

Xét hàm số 324Mo2cilGRB.png

Ta có nLNljOElFJZU.png

Để hàm số Av6VMV9xLPFG.png đồng biến trên zO0ChEZBo4u5.png cần:

Xét hàm số YJ6B34IXgHyc.png

fXqHBnUrzi8t.png

Bảng biến thiên

gl2DpSHJRrH4.png

 

Nhìn vào bảng biến thiên ta thấy với NwNU1phO5JWg.png thì hàm số yNifuPiDXkAQ.png đồng biến trên dB2r8kcE13Gd.png, hàm số dcL7bYb4a66H.png đồng biến trên đoạn E4dbjNXtSb02.png.

24 tháng 8 2017

Đáp án B

Đặt t = sin x ⇒ t ' = c o s x ≥ 0 ; ∀ c ∈ 0 ; π 2  suy ra  0 ≤ t ≤ 1

Khi đó bài toán trở thành :Tìm m để hàm số f t = t 3 + 3 t 2 - m t - 4  đồng biến trên [0;1]

Ta có  f ' t = 3 t 2 + 6 t - m ≥ 0 ⇔ m ≤ 3 t 2 + 6 t ; ∀ t ∈ 0 ; 1 ⇔ m ≤ m i n 0 ; 1 g t = 3 t 2 + 6 t

Xét hàm số trên , suy ra m i n 0 ; 1 g t = g 0 = 0 . Vậy  m ≤ 0

14 tháng 9 2017

Đáp án đúng : A

20 tháng 6 2023

Ta có \(f\left(x\right)>0,\forall x\in\left(0;1\right)\)

\(\Leftrightarrow-x^2-2\left(m-1\right)x+2m-1>0,\forall x\left(0;1\right)\)

\(\Leftrightarrow-2m\left(x-1\right)>x^2-2x+1,\forall x\in\left(0;1\right)\) (*)

Vì \(x\in\left(0;1\right)\Rightarrow x-1< 0\) nên (*) \(\Leftrightarrow-2m< \dfrac{x^2-2x+1}{x-1}=x-1=g\left(x\right),\forall x\in\left(0;1\right)\)

\(\Leftrightarrow-2m\le g\left(0\right)=-1\Leftrightarrow m\ge\dfrac{1}{2}\)

20 tháng 6 2023

Có cách nào khác nx ạ?