Trong hệ trục tọa độ Oxy cho ba điểm A(1; -4) , B(4;5) và C(0;-9). Điểm M di chuyển trên trục Ox . Đặt Q=\(2\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|+3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\) . Biết giá trị nhỏ nhất của Q có dạng \(a\sqrt{b}\)trong đó a, b là các số nguyên dương a, c< 20. Tính...
Đọc tiếp
Trong hệ trục tọa độ Oxy cho ba điểm A(1; -4) , B(4;5) và C(0;-9). Điểm M di chuyển trên trục Ox . Đặt Q=\(2\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|+3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\) . Biết giá trị nhỏ nhất của Q có dạng \(a\sqrt{b}\)
trong đó a, b là các số nguyên dương a, c< 20. Tính a-b
tại sao
Q=\(2\sqrt{\left(9-3m\right)^2}...\)
chuyển xuống thành \(\sqrt{\left(18-6m\right)^2...}\)
sao không phải là nhân 4 ở trong mài
vì \(2=\sqrt{4}\), vậy thì phải nhân 4 chứ
Do M thuộc Ox, gọi tọa độ M có dạng \(M\left(m;0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-m;-4\right)\\\overrightarrow{MB}=\left(4-m;5\right)\\\overrightarrow{MC}=\left(-m;-9\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}+2\overrightarrow{MB}=\left(9-3m;6\right)\\\overrightarrow{MB}+\overrightarrow{MC}=\left(4-2m;-4\right)\end{matrix}\right.\)
\(Q=2\sqrt{\left(9-3m\right)^2+6^2}+3\sqrt{\left(4-2m\right)^2+\left(-4\right)^2}\)
\(=\sqrt{\left(6m-18\right)^2+12^2}+\sqrt{\left(12-6m\right)^2+12^2}\)
\(=\sqrt{\left(18-6m\right)^2+12^2}+\sqrt{\left(6m-12\right)^2+12^2}\)
\(Q\ge\sqrt{\left(18-6m+6m-12\right)^2+\left(12+12\right)^2}=6\sqrt{17}\)
\(\Rightarrow a-b=-11\)