Cho n số nguyên x1; x2; x3; ...; xn trong đó mỗi số chỉ là 1 hoặc -1. Chứng minh rằng nếu x1.x2+x2.x3+ ...+xn-1.xn+xn.x1= 0 thì n chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này phải là n nguyên dương nhé
Ta có bài toán tổng quát : Cho pt \(ax^2+bx+c=0\left(a\ne0\right)\)có 2 nghiệm x1 ; x2
Đặt \(S_n=x_1^n+x_2^n\)thì pt \(aS_{n+2}+bS_{n+1}+cS_n=0\)cũng có nghiệm với n nguyên dương
Thật vậy Có : \(aS_{n+2}+bS_{n+1}+cS_n=a\left(x_1^{n+2}+x_2^{n+2}\right)+b\left(x_1^{n+1}+x_2^{n+1}\right)+c\left(x_1^n+x_2^n\right)\)
\(=x_1^n\left(ax_1^2+bx_1+c\right)+x_2^n\left(ax_2^2+bx_2+c\right)\)
\(=0\)
Vậy bài toán đc c/m
Áp dụng bài toán trên :pt \(x^2-3x+1=0\)Có nghiệm nên
pt \(s_{n+2}-3S_{n+1}+S_n=0\)cũng có nghiệm
\(\Rightarrow S_{n+2}=3S_{n+1}-S_n\)
Ta sẽ c/m Sn là số nguyên bằng phương pháp quy nạp
Với \(n=0\Rightarrow S_0=2\inℤ\)
Với \(n=1\Rightarrow S_1=3\inℤ\)
Với \(n=2\Rightarrow S_2=7\inℤ\)
Giả sử bài toán đúng với .n = k và n = k + 1 (k là stn)
Ta phải c/m phải toán đúng với n = k + 2
Có \(S_{k+2}=6S_{k+1}-S_k\inℤ\left(Do\text{ }S_{k+1};S_k\inℤ\right)\)
Vậy \(S_n\inℤ\forall n\inℕ^∗\)
uses crt;
var a:array[1..100]of integer;
n,dem,i,j:integer;
begin
clrscr;
readln(n);
for i:=1 to n do
read(a[i]);
for i:=1 to n do
begin
dem:=0;
for j:=1 to a[i] do
if a[i] mod j=0 then inc(dem);
if dem mod 2=0 then write('0 ')
else write('1 ');
end;
readln;
end.
a.đặt a+15=b2;a-1=c2
=>(a+15)-(a-1)=b2-c2=(b+c)(b-c)
=>(b+c)(b-c)=16
ta có 2 nhận xét:
*(b+c)-(b-c)=2c là 1 số chẵn nên 2 số b+c và b-c là 2 số cùng tính chẵn lẻ.Mà 16 là số chẵn nên 2 số b+c và b-c cùng chẵn.
*b+c>b-c(vì a là số tự nhiên)
=>b+c=8 và b-c=2 =>b=(8+2):2=5
vậy a+15=52=>a=10
hgdiuhttntjthbjhdfk
54
ủng hộ mk nha