Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(x_1< x_2\). Do đó: \(x_1=\frac{2n-1-1}{2}=n-1\) và \(x_2=\frac{2n-1+1}{2}=n\)
Ta có \(x_1^2-2x_2+3=\left(n-1\right)^2-2n+3\)
\(=n^2-2n+1-2n+3=n^2-4n+4=\left(n-2\right)^2\ge0\)
Dấu "=" xảy ra <=> n=2
đen ta=(2n-1)^2-4n(n-1)=1>0
=>pt có 2 nghiệm phân biệt
=>x1=(2n-1+1)/2=n;x2=(2n-1-1)/2=n-1
ta có:x1^2-2x2+3=n^2-2n+2+3=(n-1)^2+4>0
Câu a :
Ta có :
\(\Delta=4\left(n^2-2n+1\right)-4\left(2n-3\right)\)
\(=4n^2-8n+4-8n+12\)
\(=4n^2-16n+16\)
\(=4\left(n-2\right)^2\ge0\)
Nên phương trình luôn có nghiệm với mọi giá trị n .
Câu b :
Theo định lý vi-ét ta có :
\(\left\{{}\begin{matrix}x_1+x_2=2n-2\\x_1.x_2=2n-3\end{matrix}\right.\)
Mà : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2.x_1.x_2=10\)
\(\Leftrightarrow\left(2n-2\right)^2-2\left(2n-3\right)=10\)
\(\Leftrightarrow4n^2-8n+4-4n+6-10=0\)
\(\Leftrightarrow4n^2-12n=0\)
\(\Leftrightarrow4n\left(n-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4n=0\\n-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=0\\n=3\end{matrix}\right.\)
a)Ta có:\(\Delta'=\left(-\left(n-1\right)\right)^2-\left(2n-3\right)=n^2-2n+1-2n+3\)\(=n^2-4n+4=\left(n-2\right)^2\ge0\forall n\)
⇒phương trình luôn có nghiệm với mọi giá trị của n
b)Khi đó theo Viets:\(\left\{{}\begin{matrix}x_1+x_2=2\left(n-1\right)=2n-2\\x_1\cdot x_2=2n-3\end{matrix}\right.\)
Ta có:\(x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1\cdot x_2=10\)
\(\Leftrightarrow\left(2n-2\right)^2-2\left(2n-3\right)-10=0\)
\(\Leftrightarrow4n^2-8n+4-4n+6-10=0\)
\(\Leftrightarrow4n^2-12n=0\Leftrightarrow4n\left(n-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4n=0\\n-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n=0\\n=3\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}n=0\\n=3\end{matrix}\right.\) thì phương trình có 2 nghiệm \(x_1;x_2\) thỏa mãn \(x_1^2+x_2^2=10\)
(Đây chỉ là ý kiến của riêng mình.Có gì sai hoặc thiếu sót bạn thông cảm và chữa cho mình nha!!Cảm ơn nhiều ạ!!!)
Bài này phải là n nguyên dương nhé
Ta có bài toán tổng quát : Cho pt \(ax^2+bx+c=0\left(a\ne0\right)\)có 2 nghiệm x1 ; x2
Đặt \(S_n=x_1^n+x_2^n\)thì pt \(aS_{n+2}+bS_{n+1}+cS_n=0\)cũng có nghiệm với n nguyên dương
Thật vậy Có : \(aS_{n+2}+bS_{n+1}+cS_n=a\left(x_1^{n+2}+x_2^{n+2}\right)+b\left(x_1^{n+1}+x_2^{n+1}\right)+c\left(x_1^n+x_2^n\right)\)
\(=x_1^n\left(ax_1^2+bx_1+c\right)+x_2^n\left(ax_2^2+bx_2+c\right)\)
\(=0\)
Vậy bài toán đc c/m
Áp dụng bài toán trên :pt \(x^2-3x+1=0\)Có nghiệm nên
pt \(s_{n+2}-3S_{n+1}+S_n=0\)cũng có nghiệm
\(\Rightarrow S_{n+2}=3S_{n+1}-S_n\)
Ta sẽ c/m Sn là số nguyên bằng phương pháp quy nạp
Với \(n=0\Rightarrow S_0=2\inℤ\)
Với \(n=1\Rightarrow S_1=3\inℤ\)
Với \(n=2\Rightarrow S_2=7\inℤ\)
Giả sử bài toán đúng với .n = k và n = k + 1 (k là stn)
Ta phải c/m phải toán đúng với n = k + 2
Có \(S_{k+2}=6S_{k+1}-S_k\inℤ\left(Do\text{ }S_{k+1};S_k\inℤ\right)\)
Vậy \(S_n\inℤ\forall n\inℕ^∗\)