K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2019

Giải giùm mik vs mai mình nộp r

8 tháng 12 2017

Hỏi đáp Toán
Lấy điểm M thuộc tia AM sao cho M là trung điểm của AM.
Ta chứng minh được:
\(\Delta AMB=\Delta M'MC\left(c.g.c\right)\) suy ra AB = BM'.
\(\Delta AMC=\Delta M'MB\left(c.g.c\right)\Rightarrow AC=BM'\), \(\widehat{CAM}=\widehat{BM'M}\).
Theo định lý tổng ba góc trong tam giác:
\(\widehat{M'AB}+\widehat{BM'A}+\widehat{ABM'}=180^o\Leftrightarrow\widehat{BAM'}+\widehat{ABM'}+\widehat{M'AC}=180^o\).
\(\widehat{DAE}+\widehat{BAM}+\widehat{MAC}=180^o\).
Suy ra \(\widehat{DAE}=\widehat{ABM'}\).
Xét tam giác DAE và tam giác ABM' cóL
DA = AB.
BM' = AC = AE.
\(\widehat{DAE}=\widehat{ABM'}\).
Suy ra \(\Delta DAE=\Delta AB'M\left(c.g.c\right)\).
Suy ra DM = AM' = 2AM. (đpcm).

tự vẽ  hình nha

a, Ta có : CAD = CAB + BAD = CAB + 90

               EAB = EAC + CAB = CAB + 90

               => CAD = EAB

ta có : tam giác ACD = AEB ( c.g.c)

b,gọi M,N lần lượt là giao điểm  của CD với EB

  ta có : ADM = MBN ( tam giác ACD = AEB ) ; MNB = AMD ( đối đỉnh )

  vì ADM + AMD = 90 độ ( tam giác ADM vuông tại A )

nên MBN + BMN = 90 độ => MNB = 90 độ => EB vuông góc CD

c, Gọi H là giao điểm của CA và ED. Giả sử CA vuông góc ED

=> EHC = 90 độ hay EH vuông góc với CA. như vậy từ điểm E  có hai đường thẳng EA và ED  cùng vuông góc với đường thẳng AC. điều này trái với tiên đề Ơ - Clit về đường thẳng vuông góc

22 tháng 3 2020

Hình tự vẽ 

có DAB=EAC =90*

=>DAB+BAC=EAC+BAC

=>DAC=BAE

Xét tam giác ACD và Tam giác AED có:

AB=AD(gt)

DAC=BAE(cmt)

AE=AC(gt)

=>Tam giác ACD= tam giác AEB(c-g-c)

b) Gọi là giao điểm của EB và CD

F là giao của CD và AB

Xét tam giác FAC và tam giác FIB, có:

AFD=IFD(đối đỉnh)

ADF=IBF(tam giác ACD= tam giác AEB0

=>DAF=BIF=90*

=>EB vuông góc vớiCD

a, Ta có : CAD = CAB + BAD = CAB + 90

               EAB = EAC + CAB = CAB + 90

               => CAD = EAB

Ta có : tam giác ACD = AEB ( c.g.c)

b, Gọi M,N lần lượt là giao điểm của CD với EB

  Ta có : ADM = MBN ( tam giác ACD = AEB ) ; MNB = AMD ( đối đỉnh )

  Vì ADM + AMD = 90 độ ( tam giác ADM vuông tại A )

Nên MBN + BMN = 90 độ => MNB = 90 độ => EB vuông góc CD

c, Gọi H là giao điểm của CA và ED. Giả sử CA vuông góc ED

=> EHC = 90 độ hay EH vuông góc với CA. như vậy từ điểm E  có hai đường thẳng EA và ED  cùng vuông góc với đường thẳng AC. điều này trái với tiên đề Ơ - Clit về đường thẳng vuông góc

nha