cho tam giác ABC vuông ở A Gọi M là trung điểm của cạnh AC ; trên tia đối của tia Mb lấy điểm E sao cho ME=MB
a) CM tam giác AMB= tam giác CME
b) so sánh CE và BC
c) so sánh góc ABM va góc MBC
d) CM AE//BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Khúc Nguyễn Việt Hà - Toán lớp 7 - Học toán với OnlineMath Xem đi :)
a) ADME là hình chữ nhật vì có 3 góc vuông: \(\widehat{A}\)= \(\widehat{D}\)= \(\widehat{E}\)= 900
b) Để ADME là hình vuông thì AM là phân giác \(\widehat{A}\)
Vậy M là giao đường phân giác góc A với BC thì ADME là hình vuông
Kẻ \(EI\perp AH,EK\perp BC\)
C/m EIHK là hình chữ nhật để \(EI=HK\)
Ta có: \(AM=KM\left(=\frac{1}{2}BE\right)\)
\(\Delta AHB=\Delta EIA\left(ch-gn\right)\Rightarrow AH=EI\)
\(\Delta AHM=\Delta KHM\left(c.c.c\right)\Rightarrow\widehat{AHM}=\widehat{KHM}\)
Mà tia HM nằm giữa 2 tia HA, HC nên HM là tia phân giác của \(\widehat{AHC}\)
Mình chỉ gạch ý thôi. Mong bạn hiểu cách làm bài. Chúc bạn học tốt.
a) Xét ΔABM và ΔCDM có
MA=MC(M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
MB=MD(gt)
Do đó: ΔABM=ΔCDM(c-g-c)
b) Ta có: ΔABM=ΔCDM(cmt)
nên \(\widehat{MAB}=\widehat{MCD}\)(hai góc tương ứng)
mà \(\widehat{MAB}=90^0\)(gt)
nên \(\widehat{MCD}=90^0\)
\(\Leftrightarrow\widehat{ACD}=90^0\)
hay AC\(\perp\)CD(Đpcm)
a, Xét △ABI và △ACI có : AB = AC (gt) BI = CI (do I là trung điểm BC) AI chung => △ABI = △ACI (c-c-c) b, Xét △AIC và △DIB có : AI = DI (gt) \widehat{AIC}=\widehat{DIB} AIC = DIB (đối đỉnh) IC = IB => △AIC = △DIB (c-g-c) => \widehat{DBI}=\widehat{ICA} DBI = ICA (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AC // BD c, Xét △IKB và △IHC có : \widehat{IKB}=\widehat{IHC}=90^O IKB = IHC =90 O IB = IC \widehat{KIB}=\widehat{CIH} KIB = CIH (đối đỉnh) => △IKB = △IHC (ch-gn) => IK = IH
a) Xét tam giác AMB và tam giác CME có :
BM=ME (gt)
Góc AMB = góc CME ( đối đỉnh )
AM = MC ( gt )
-> vậy tam giác AMB = tam giác CME (c.g.c)
b)
a/(c.g.c)
b/ CE=AB ( cặp cạnh tương ứng)
Mà: AB<BC( cạnh huyền lớn nhất)
Nên CE<BC
c/góc ABM=góc CEM(cặp góc tương ứng) (1)
Xét tam giác BCE có: CE<BC( CMT)
Suy ra góc CEM<góc MBC (2) ( Quan hệ giữa góc và cạnh đối diện trong 1 tam giác)
Vậy: từ (1) và (2), ta có: góc ABM< góc MBC
d/góc ABM=góc CEM, lại ở vị trí SLT nên AE//BC