K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2016

a) Xét tam giác AMB và tam giác CME có :  

BM=ME (gt)

Góc AMB = góc CME ( đối đỉnh )

AM = MC ( gt )

-> vậy tam giác AMB = tam giác CME (c.g.c)

b)

10 tháng 5 2016

a/(c.g.c)

b/ CE=AB ( cặp cạnh tương ứng)

Mà: AB<BC( cạnh huyền lớn nhất)

Nên CE<BC

c/góc ABM=góc CEM(cặp góc tương ứng)  (1)

Xét tam giác BCE có: CE<BC( CMT)

Suy ra góc CEM<góc MBC  (2)  ( Quan hệ giữa góc và cạnh đối diện trong 1 tam giác)

Vậy: từ (1) và (2), ta có: góc ABM< góc MBC

d/góc ABM=góc CEM, lại ở vị trí SLT nên AE//BC

22 tháng 1 2019

Trong OLM ko ai giải được bài này àk

22 tháng 1 2019

Câu hỏi của Khúc Nguyễn Việt Hà - Toán lớp 7 - Học toán với OnlineMath Xem đi :)

18 tháng 12 2017

ai giúp mk đi đg cần gấp

18 tháng 12 2017

a)  ADME là hình chữ nhật vì có 3 góc vuông:  \(\widehat{A}\)\(\widehat{D}\)\(\widehat{E}\)= 900

b)  Để ADME là hình vuông thì AM là phân giác \(\widehat{A}\)

Vậy M là giao đường phân giác góc A với BC thì ADME là hình vuông

13 tháng 10 2018

Kẻ \(EI\perp AH,EK\perp BC\)

C/m EIHK là hình chữ nhật để \(EI=HK\)

Ta có: \(AM=KM\left(=\frac{1}{2}BE\right)\)

\(\Delta AHB=\Delta EIA\left(ch-gn\right)\Rightarrow AH=EI\)

\(\Delta AHM=\Delta KHM\left(c.c.c\right)\Rightarrow\widehat{AHM}=\widehat{KHM}\) 

Mà tia HM nằm giữa 2 tia HA, HC nên HM là tia phân giác của \(\widehat{AHC}\)

Mình chỉ gạch ý thôi. Mong bạn hiểu cách làm bài. Chúc bạn học tốt.

15 tháng 9 2021

Đáp án tham khảo

undefined

a) Xét ΔABM và ΔCDM có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD(gt)

Do đó: ΔABM=ΔCDM(c-g-c)

b) Ta có: ΔABM=ΔCDM(cmt)

nên \(\widehat{MAB}=\widehat{MCD}\)(hai góc tương ứng)

mà \(\widehat{MAB}=90^0\)(gt)

nên \(\widehat{MCD}=90^0\)

\(\Leftrightarrow\widehat{ACD}=90^0\)

hay AC\(\perp\)CD(Đpcm)

5 tháng 12 2021

đpcm là j vậy bạn

 

19 tháng 6 2017

ko pc s thức kuya z

24 tháng 12 2020

a, Xét △ABI và △ACI có : AB = AC (gt) BI = CI (do I là trung điểm BC) AI chung => △ABI = △ACI (c-c-c) b, Xét △AIC và △DIB có : AI = DI (gt) \widehat{AIC}=\widehat{DIB} AIC = DIB (đối đỉnh) IC = IB => △AIC = △DIB (c-g-c) => \widehat{DBI}=\widehat{ICA} DBI = ICA (2 góc tương ứng) mà 2 góc này ở vị trí so le trong => AC // BD c, Xét △IKB và △IHC có : \widehat{IKB}=\widehat{IHC}=90^O IKB = IHC =90 O IB = IC \widehat{KIB}=\widehat{CIH} KIB = CIH (đối đỉnh) => △IKB = △IHC (ch-gn) => IK = IH