K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2015

bạn ghi đề sai phải ko? Phải là căn trong căn chứ. sao lại có \(\sqrt{3}+\sqrt{3}+\sqrt{3}...\) hay là \(\sqrt{3+\sqrt{3+\sqrt{.....+\sqrt{3}}}}\)

9 tháng 7 2015

Đặt cái căn dưới mẫu là a, suy ra căn trên tử là \(\sqrt{3+a}\). Nếu đề chính xác thì biến đổi tương đương nhẹ nhàng là ra :))

9 tháng 7 2015

vui long giai chi tiet
minh hong hiu

25 tháng 12 2015

Đặt \(a=\sqrt{3+\sqrt{3+...+\sqrt{3}}}\)(có 2010 dấu căn), suy ra :

\(a^2=3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}\)(có 2009 dấu căn), nên

\(a^2-3=\sqrt{3+\sqrt{3+...+\sqrt{3}}}\)(có 2009 dấu căn), do đó ta có :

\(\frac{3-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}{6-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=\frac{3-a}{6-\left(a^2-3\right)}=\frac{3-a}{9-a^2}=\frac{3-a}{\left(3-a\right)\left(3+a\right)}=\frac{1}{3+a}\).

Do  \(a+3>4\) nên  \(\frac{1}{3+a}<\frac{1}{4}\) hay \(\frac{3-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}{6-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}<\frac{1}{4}\) (đpcm).

31 tháng 12 2018

Xét tử : 

\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{56+\sqrt{56+\sqrt{56+...+\sqrt{64}}}}\)

\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{56+\sqrt{56+\sqrt{56+...+8}}}\)

\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{64}=3-8=-5\) ( bước này tự hiểu nhé ) 

Xét mẫu : 

\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}\)

\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{2+\sqrt{2+\sqrt{2+...+2}}}\)

\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{4}=6-2=4\) ( bước này cũng tự hiểu -,- ) 

\(\Rightarrow\)\(A=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}>\frac{-5}{4}>-1\) \(\left(1\right)\)

(Xét 1 lần nữa -,- ) 

Xét tử : 

\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}\)

\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{2+\sqrt{2+\sqrt{2+...+2}}}\)

\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{4}=3-2=1\)

Xét mẫu : 

\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{56+\sqrt{56+\sqrt{56+...+\sqrt{64}}}}\)

\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{56+\sqrt{56+\sqrt{56+...+8}}}\)

\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{64}=6-8=-2\)

\(\Rightarrow\)\(A=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}< \frac{1}{-2}< 0\) \(\left(2\right)\)

Từ (1) và (2) suy ra \(-1< A< 0\)

Vậy A không thể là 1 số nguyên

... 

2 tháng 1 2019

Có cách khác ngắn hơn nha bn!

Đặt:

\(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a>0\)(có 2019 dấu căn)

\(\Rightarrow3+\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a^2\) (có 2018 dấu căn)

\(\Rightarrow\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a^2-3\) (có 2018 dấu căn)

Thay vào A,ta đc:

\(A=\frac{3-a}{6-\left(a^2-3\right)}=\frac{3-a}{9-a^2}=\frac{1}{3+a}\)

Do a>0 \(\Rightarrow0< A=\frac{1}{3+a}< 1\)

Vậy : A ko thể là số nguyên

12 tháng 8 2016

\(\left(\sqrt{200}+5\sqrt{150}-7\sqrt{600}\right):\sqrt{50}=2+5\sqrt{3}-7\sqrt{12}\)

\(2+5\sqrt{3}-14\sqrt{3}=2-9\sqrt{3}\)