Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=\sqrt{3+\sqrt{3+...+\sqrt{3}}}\)(có 2010 dấu căn), suy ra :
\(a^2=3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}\)(có 2009 dấu căn), nên
\(a^2-3=\sqrt{3+\sqrt{3+...+\sqrt{3}}}\)(có 2009 dấu căn), do đó ta có :
\(\frac{3-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}{6-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=\frac{3-a}{6-\left(a^2-3\right)}=\frac{3-a}{9-a^2}=\frac{3-a}{\left(3-a\right)\left(3+a\right)}=\frac{1}{3+a}\).
Do \(a+3>4\) nên \(\frac{1}{3+a}<\frac{1}{4}\) hay \(\frac{3-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}{6-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}<\frac{1}{4}\) (đpcm).
\(\left(\sqrt{200}+5\sqrt{150}-7\sqrt{600}\right):\sqrt{50}=2+5\sqrt{3}-7\sqrt{12}\)
\(2+5\sqrt{3}-14\sqrt{3}=2-9\sqrt{3}\)
Em thử nhá, ko chắc đâu ạ. Em chỉ làm đc một cái thôi
Gọi biểu thức trên là A
*Chứng minh A > 1/6
Đặt \(x=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}\left(\text{n dấu căn}\right)\)
Thì \(x=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{9}}}}=\sqrt{6+3}=3\) (1)
Và \(x^2-6=\sqrt{6+\sqrt{6+...+\sqrt{6}}}\left(\text{n -1 dấu căn}\right)\)
Biểu thức trở thành \(A=\frac{3-x}{9-x^2}=\frac{1}{3+x}\). Từ (1) suy ra \(A>\frac{1}{3+3}=\frac{1}{6}\)(*)
Xét tử :
\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{56+\sqrt{56+\sqrt{56+...+\sqrt{64}}}}\)
\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{56+\sqrt{56+\sqrt{56+...+8}}}\)
\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>3-\sqrt{64}=3-8=-5\) ( bước này tự hiểu nhé )
Xét mẫu :
\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}\)
\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{2+\sqrt{2+\sqrt{2+...+2}}}\)
\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 6-\sqrt{4}=6-2=4\) ( bước này cũng tự hiểu -,- )
\(\Rightarrow\)\(A=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}>\frac{-5}{4}>-1\) \(\left(1\right)\)
(Xét 1 lần nữa -,- )
Xét tử :
\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{2+\sqrt{2+\sqrt{2+...+\sqrt{4}}}}\)
\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{2+\sqrt{2+\sqrt{2+...+2}}}\)
\(\Leftrightarrow\)\(3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}< 3-\sqrt{4}=3-2=1\)
Xét mẫu :
\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{56+\sqrt{56+\sqrt{56+...+\sqrt{64}}}}\)
\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{56+\sqrt{56+\sqrt{56+...+8}}}\)
\(\Leftrightarrow\)\(6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}>6-\sqrt{64}=6-8=-2\)
\(\Rightarrow\)\(A=\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}}< \frac{1}{-2}< 0\) \(\left(2\right)\)
Từ (1) và (2) suy ra \(-1< A< 0\)
Vậy A không thể là 1 số nguyên
...
Có cách khác ngắn hơn nha bn!
Đặt:
\(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a>0\)(có 2019 dấu căn)
\(\Rightarrow3+\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a^2\) (có 2018 dấu căn)
\(\Rightarrow\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=a^2-3\) (có 2018 dấu căn)
Thay vào A,ta đc:
\(A=\frac{3-a}{6-\left(a^2-3\right)}=\frac{3-a}{9-a^2}=\frac{1}{3+a}\)
Do a>0 \(\Rightarrow0< A=\frac{1}{3+a}< 1\)
Vậy : A ko thể là số nguyên
Đặt cái căn dưới mẫu là a, suy ra căn trên tử là \(\sqrt{3+a}\). Nếu đề chính xác thì biến đổi tương đương nhẹ nhàng là ra :))