Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :Đặt t = \(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}} ( 2014 dấu căn )\)
\(\Rightarrow\) t > \(\sqrt{3} > \sqrt{1} = 1\)
\(\Rightarrow\) \(\sqrt{3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}}\)(2013 dấu căn ) = \(t^2 -3\)
Do đó : \(M = \frac{3-t}{6-( t^2 - 3 )}\)= \(\frac{3-t}{9-t^2}\) = \(\frac{3-t}{(3-t)(3+t)}\) = \(\frac{1}{3+t}\)
Vì t>1 \(\Rightarrow\) 3+t > 4 \(\Rightarrow\) \(\frac{1}{3+t}\) < \(\frac{1}{4}\)
Vậy M < \(\frac{1}{4}\)
Đặt \(a=\sqrt{3+\sqrt{3+...+\sqrt{3}}}\)(có 2010 dấu căn), suy ra :
\(a^2=3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}\)(có 2009 dấu căn), nên
\(a^2-3=\sqrt{3+\sqrt{3+...+\sqrt{3}}}\)(có 2009 dấu căn), do đó ta có :
\(\frac{3-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}{6-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=\frac{3-a}{6-\left(a^2-3\right)}=\frac{3-a}{9-a^2}=\frac{3-a}{\left(3-a\right)\left(3+a\right)}=\frac{1}{3+a}\).
Do \(a+3>4\) nên \(\frac{1}{3+a}<\frac{1}{4}\) hay \(\frac{3-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}{6-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}<\frac{1}{4}\) (đpcm).
Em thử nhá, ko chắc đâu ạ. Em chỉ làm đc một cái thôi
Gọi biểu thức trên là A
*Chứng minh A > 1/6
Đặt \(x=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}\left(\text{n dấu căn}\right)\)
Thì \(x=\sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{6}}}}< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{9}}}}=\sqrt{6+3}=3\) (1)
Và \(x^2-6=\sqrt{6+\sqrt{6+...+\sqrt{6}}}\left(\text{n -1 dấu căn}\right)\)
Biểu thức trở thành \(A=\frac{3-x}{9-x^2}=\frac{1}{3+x}\). Từ (1) suy ra \(A>\frac{1}{3+3}=\frac{1}{6}\)(*)
\(\left(\sqrt{200}+5\sqrt{150}-7\sqrt{600}\right):\sqrt{50}=2+5\sqrt{3}-7\sqrt{12}\)
\(2+5\sqrt{3}-14\sqrt{3}=2-9\sqrt{3}\)
Đặt cái căn dưới mẫu là a, suy ra căn trên tử là \(\sqrt{3+a}\). Nếu đề chính xác thì biến đổi tương đương nhẹ nhàng là ra :))