K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2020

( Vào TKHĐ là thấy hính nha bạn )

a) S.ABCD là hình chóp tứ giác đều

=> ABCD là hình vuông

=> .\(AC=AB\sqrt{2}=20\sqrt{2}\left(cm\right)\)

SO là chiều cao của hình chóp

=> O = AC ∩ BD và SO ⊥ (ABCD)

=> SO ⊥ AO

=> ΔSAO vuông tại O

=> SO2 + OA2 = SA2

\(\Rightarrow SO^2=SA^2-OA^2=SA^2-\left(\frac{AC}{2}\right)^2=24^2-\left(\frac{20\sqrt{2}}{2}\right)^2=376\)

=> SO =  \(\sqrt{376}\approx19,4\left(cm\right)\)(cm).

Thể tích hình chóp :

\(V=\frac{1}{3}SO.S_{ABCD}=\frac{1}{3}.\sqrt{376}.20^2=2585,43\left(cm^3\right)\)

b) Gọi H là trung điểm của CD :

\(SH^2=SD^2-DH^2=24^2-\left(\frac{20}{2}\right)^2=476\)

\(\Rightarrow SH=\sqrt{476}\approx21,8\left(cm\right)\)

=> Sxq = p.d = 2.AB.SH = \(2.20.\sqrt{476}\approx\) 872,7 (cm2 ).

Sđ = AB2 = 202 = 400 (cm2 )

⇒ Stp = Sxq + Sđ = 872,7 + 400 = 1272,7 (cm2 ).