K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1:

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{ACB}+\widehat{ABC}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{ABD}+30^0=90^0\)

hay \(\widehat{ABD}=60^0\)

Xét ΔABD có BA=BD(gt)

nên ΔBAD cân tại B(Định nghĩa tam giác cân)

Xét ΔABD cân tại B có \(\widehat{ABD}=60^0\)(cmt)

nên ΔABD đều(Dấu hiệu nhận biết tam giác đều)

Suy ra: \(\widehat{BAD}=60^0\)

Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB và AC)

\(\Leftrightarrow\widehat{CAD}+60^0=90^0\)

hay \(\widehat{CAD}=30^0\)

b) Xét ΔDAC có \(\widehat{DAC}=\widehat{DCA}\left(=30^0\right)\)

nên ΔDAC cân tại D(Định lí đảo của tam giác cân)

Xét ΔADE vuông tại E và ΔCDE cân tại E có 

DA=DC(ΔDAC cân tại D)

DE chung

Do đó: ΔADE=ΔCDE(Cạnh huyền-góc nhọn)

c) Xét ΔABC vuông tại A có \(\widehat{ACB}=30^0\)(gt)

nên BC=2AB(Định lí tam giác vuông)

Suy ra: \(BC=2\cdot5=10\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=10^2-5^2=75\)

hay \(AC=5\sqrt{3}\left(cm\right)\)

 

4 tháng 7 2021

giúp với mn ơi

14 tháng 2 2022

bạn đăng từng bài nhé

Bài 3:

\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)

BC=13cm

=>\(AC=3\sqrt{13}\left(cm\right)\)

a: ΔBAC vuông tại B có góc A=45 độ

nên ΔBAC vuông cân tại B

=>BA=BC=2a

AC=căn AB^2+BC^2=2a*căn 2

b: BH=BA*BC/AC=4a^2/2*a*căn 2=a*căn 2

c: S ABC=1/2*2a*2a=2a^2

d: C=2a+2a+2a*căn 2=4a+2a*căn 2

2 tháng 10 2021

1.

\(a,\sin\widehat{B}=\sin60^0=\dfrac{AC}{BC}=\dfrac{\sqrt{3}}{2}\Leftrightarrow AC=\dfrac{12\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\\ b,AC^2=CH\cdot BC\left(HTL.\Delta\right)\\ \Rightarrow CH=\dfrac{AC^2}{BC}=9\left(cm\right)\)

 

2 tháng 10 2021

Tim Gia Tri Nho Nhat Cua 

a) A = x - 4 can x + 9

b) B = x - 3 can x - 10 

c ) C = x - can x + 1 

d ) D = x + can x + 2 

a: S CAB=1/2*CA*CB=1/2*CH*AB

=>CA*CB=CH*AB

b: AB=căn 6^2+8^2=10cm

CH=6*8/10=4,8cm

a: Xét ΔABM vuông tại B và ΔANM vuông tại N có 

AM chung

\(\widehat{BAM}=\widehat{NAM}\)

Do đó:ΔABM=ΔANM

Suy ra: AB=AN

b: Xét ΔIMB vuông tại B và ΔCMN vuông tại N có

MB=MN

\(\widehat{IMB}=\widehat{CMN}\)

Do đó: ΔIMB=ΔCMN

c: Ta có: ΔIMB=ΔCMN

nên BI=NC

Ta có: AB+BI=AI

AN+NC=AC

mà AB=AN

và BI=NC

nên AI=AC

hay ΔAIC cân tại A

Bài 1:

a: Xét ΔBAC vuông tại A có 

\(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=60^0\)

Xét ΔBAC vuông tại A có 

\(AB=BC\cdot\sin60^0\)

\(\Leftrightarrow BC=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow AC=2\sqrt{3}\left(cm\right)\)

6 tháng 6 2021

Đây nhé!

Không có mô tả.

Không có mô tả.

Không có mô tả.

Xét ΔABC vuông tại A có \(\cos B=\dfrac{AB}{BC}\)

=>6/BC=1/2

=>BC=12(cm)

=>\(AC=6\sqrt{3}\left(cm\right)\)

Xét ΔABC có CD là đường phân giác

nên AD/AC=DB/BC

\(\Leftrightarrow\dfrac{AD}{6\sqrt{3}}=\dfrac{DB}{12}\)

mà AD+DB=6

nên Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:

\(\dfrac{AD}{6\sqrt{3}}=\dfrac{DB}{12}=\dfrac{AD+DB}{6\sqrt{3}+12}=\dfrac{6}{12+6\sqrt{3}}=2-\sqrt{3}\)

Do đó: \(AD=12\sqrt{3}-18\left(cm\right);DB=24-12\sqrt{3}\left(cm\right)\)

3 tháng 2 2022

Em chưa học cos