Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABC vuông tại A
sinB = \(\dfrac{AC}{BC}\Rightarrow\dfrac{1}{2}=\dfrac{AC}{BC}\Rightarrow\dfrac{BC}{2}=\dfrac{AC}{1}\Rightarrow\dfrac{BC^2}{4}=\dfrac{AC^2}{1}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{BC^2}{4}=\dfrac{AC^2}{1}=\dfrac{AB^2}{3}=12\Rightarrow BC=4\sqrt{3};AC=2\sqrt{3}\)
Vì CD là phân giác ^C nên
\(\dfrac{AD}{BD}=\dfrac{AC}{BC}\Rightarrow\dfrac{AD}{AC}=\dfrac{BD}{BC}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{AD}{AC}=\dfrac{BD}{BC}=\dfrac{AB}{AC+BC}=\dfrac{6}{6\sqrt{3}}=\dfrac{\sqrt{3}}{3}\Rightarrow AD=2\)
=> BD = AB - AD = 6 - 2 = 4
a) Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
\(\widehat{CAE}=\widehat{KAE}\)(AE là tia phân giác của \(\widehat{CAK}\))
Do đó: ΔACE=ΔAKE(Cạnh huyền-góc nhọn)
Suy ra: AC=AK(Hai cạnh tương ứng)
giup mik với mai thi hk2 r ,mà mình chx giải ra bài này để ôn
Các nhân tài toán học cứu giúp
xét tam giac ABD và tam giác KBD có
^BAD=^BKD(BAvuông AC,DK vuông DC)
^ABD=^KBD(BDlà phân giác ^B)
BD chung
Suy ratam giac ABD = tam giác KBD(cạnh góc vuông ,góc nhọn kề)
Xét ΔABC vuông tại A có \(\cos B=\dfrac{AB}{BC}\)
=>6/BC=1/2
=>BC=12(cm)
=>\(AC=6\sqrt{3}\left(cm\right)\)
Xét ΔABC có CD là đường phân giác
nên AD/AC=DB/BC
\(\Leftrightarrow\dfrac{AD}{6\sqrt{3}}=\dfrac{DB}{12}\)
mà AD+DB=6
nên Áp dụng tính chất của dãy tỉ số bằng nhau,ta được:
\(\dfrac{AD}{6\sqrt{3}}=\dfrac{DB}{12}=\dfrac{AD+DB}{6\sqrt{3}+12}=\dfrac{6}{12+6\sqrt{3}}=2-\sqrt{3}\)
Do đó: \(AD=12\sqrt{3}-18\left(cm\right);DB=24-12\sqrt{3}\left(cm\right)\)
Em chưa học cos