K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2016

giải rõ ra đi

8 tháng 2 2021

ko có đáp án bạn ạ

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Ta có: \(p = \frac{{a + b + c}}{2} = \frac{{15 + 20 + 25}}{2} = 30\)

Áp dụng công thức heron, ta có:  \(S = \sqrt {30.(30 - 15).(30 - 20).(30 - 25)}  = 150\)

b) Ta có: \(S = \frac{{abc}}{{4R}} \Rightarrow R = \frac{{abc}}{{4S}} = \frac{{15.20.25}}{{4.150}} = 12,5.\)

ΔABC~ΔA'B'C'

=>\(\dfrac{AB}{A'B'}=\dfrac{AC}{A'C'}=\dfrac{BC}{B'C'}\)

=>\(\dfrac{AB}{9}=\dfrac{AC}{12}=\dfrac{BC}{15}\)

=>\(\dfrac{AB}{3}=\dfrac{AC}{4}=\dfrac{BC}{5}\)

=>AB là cạnh nhỏ nhất trong ΔABC

Theo đề, ta có: AB=3cm

=>\(\dfrac{AC}{4}=\dfrac{BC}{5}=\dfrac{3}{3}=1\)

=>\(AC=4\cdot1=4\left(cm\right);BC=5\cdot1=5\left(cm\right)\)

24 tháng 4 2015

ta có : AB2 + AC2 = 92 + 122 = 81 +144 = 225

          BC2 = 152  = 225

suy ra      AB2 + AC2    = BC2

 do đó tam giác ABC vuông tại A ( theo định lí pitago đảo)

13 tháng 8 2018

mình biết nội quy rồi nên đưng đăng nội quy

ai chơi bang bang 2 kết bạn với mình

mình có nick có 54k vàng đang góp mua pika 

ai kết bạn mình cho

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(a = BC = 20;\;b = AC = 15;\;c = AB = 12.\)

a) Áp dụng định lí cosin trong tam giác ABC, ta có:

 \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\;\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\)

\( \Rightarrow \cos A = \frac{{{{15}^2} + {{12}^2} - {{20}^2}}}{{2.15.12}};\;\cos B = \frac{{{{20}^2} + {{12}^2} - {{15}^2}}}{{2.20.12}}\)

\( \Rightarrow \cos A =  - \frac{{31}}{{360}};\;\cos B = \frac{{319}}{{480}}\)

\( \Rightarrow \widehat A = 94,{9^o};\;\widehat B = 48,{3^o}\)

\( \Rightarrow \widehat C = {180^o} - \left( {94,{9^o} + 48,{3^o}} \right) = 36,{8^o}\)

b)

Diện tích tam giác ABC là: \(S = \frac{1}{2}.bc.\sin A = \frac{1}{2}.15.12.\sin 94,{9^o} \approx 89,7.\)

21 tháng 2 2016

bài của bại giống hệt bài của mình chỉ khác là của mình điểm D là điểm E

28 tháng 2 2016

cân tại đâu

a: Xét ΔABC có AB<AC<BC

nên góc C<góc B<góc A

b: góc C=180-50-60=70 độ

Xét ΔABC có góc A<góc B<góc C

nên BC<AC<AB