K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2021

#)Giải :

 

Giả sử cả A và B đều chia hết cho 5 

=> a - b chia hết cho 5 

=> 22n + 1 + 22n + 1 + 1 - (22n + 1 - 22n + 1 + 1) = 2.22n + 1 chia hết cho 5 

=> 22n + 1 chia hết cho 5 

Nhưng vì 22n + 1 có tận cùng là 0 và 5 nên điều này không thể xảy ra

=> Phải có ít nhất A(n) hoặc B(n) không chia hết cho 5, số còn lại chia hết cho 5

=> đpcm

15 tháng 2 2022

-Ta có: \(2^{4n}=16^n=\overline{...6}\)

\(\Rightarrow2^{4n}.4=\overline{...6}.4\)

\(\Rightarrow2^{4n+2}=\overline{...4}\)

\(A.B=\left(2^{2n+1}+2^{n+1}+1\right)\left(2^{2n+1}-2^{n+1}+1\right)\)

\(=\left[\left(2^{2n+1}+1\right)+2^{n+1}\right]\left[\left(2^{2n+1}+1\right)-2^{n-1}\right]\)

\(=\left(2^{2n+1}+1\right)^2-2^{2.\left(n+1\right)}\)

\(=2^{4n+2}+2^{2n+1}.2+1-2^{2n+2}\)

\(=2^{4n+2}+1=\overline{...4}+1=\overline{...5}⋮5\)

-Như vậy, thì \(A⋮5\) hay \(B⋮5\).

-Còn về hai số đó có thể cùng chia hết cho 5 không thì mình chưa làm được.

16 tháng 2 2022

-Chứng minh hai số đó không thể cùng chia hết cho 5:

-Vì \(\left(A.B\right)⋮5\) nên sẽ có 1 trong hai số chia hết cho 5. Vì A,B có vai trò giống nhau nên giả sử số đó là A.

-Ta chứng minh \(\left(A+B\right)\) không chia hết cho 5 thì \(B\) cũng không chia hết cho 5. 

\(A+B=\left(2^{2n+1}+2^{n+1}+1\right)+\left(2^{2n+1}-2^{n+1}+1\right)\)

\(=2.2^{2n+1}+2=2\left(2^{2n+1}+1\right)\)

-Ta có: \(2^{2n}=4^n\).

+Nếu \(n=2k\) thì \(4^n=4^{2k}=16^k=\overline{...6}\Rightarrow4^n.2+1=\overline{...2}+1=\overline{...3}\) không chia hết cho 5.

+Nếu \(n=2k+1\) thì \(4^n=4^{2k+1}=16^k.4=\overline{...6}.4=\overline{...4}\)

\(\Rightarrow4^n.2+1=\overline{...8}+1=\overline{...9}\).

\(\Rightarrow\) Với mọi giá trị của n thì \(4^n.2+1=2^{2n+1}+1\) không chia hết cho 5.

\(\Rightarrow2\left(2^{2n+1}+1\right)\) không chia hết cho 5 hay \(A+B\) không chia hết cho 5.

\(\Rightarrow B\) không chia hết cho 5.

-Vậy.................

1 tháng 4 2022

lớp 5 học số mũ rồi à

11 tháng 7 2024

bạn à :))) 3 năm rồi ấy

 

4 tháng 12 2021

\(2n^3+22n\\ =2n\left(n^2+11\right)\\ =2n\left(n^2-1+12\right)\\ =2n\left(n^2-1\right)+12.2n=2n\left(n-1\right)\left(n+1\right)+24n\)

Vì n-1, n, n+1 là 3 số nguyên liên tiếp nên có ít nhất 1 số chia hết cho 2, 1 số chia hết cho 3. Mà (2,3)=1\(\Rightarrow n\left(n+1\right)\left(n-1\right)⋮2.3=6\Rightarrow2n\left(n+1\right)\left(n-1\right)⋮6\forall n\in Z\)

\(24⋮6\Rightarrow24n⋮6\forall n\in Z\)

\(\Rightarrow2n\left(n-1\right)\left(n+1\right)+24n⋮6\forall n\in Z\)

\(\Rightarrow2n^3+22n⋮6\forall n\in Z\)

 

\(\)

29 tháng 12 2019

a) Để A là phân số thì : 2n - 4  ≠ 0

2n  ≠ 4

n  ≠ 2

Vậy với n  ≠ 2 thì A là phân số

b) Ta có  A = 2 n + 2 2 n − 4 = 1 + 6 2 n − 2 = 1 + 3 n − 2

Để A là số nguyên thì 3 ⋮ n - 2 hay (n - 2) ∈ U(3)

n − 2 = 1 ⇒ n = 3 n − 2 = − 1 ⇒ n = 1 n − 2 = 3 ⇒ n = 5 n − 2 = − 3 ⇒ n = − 1

Vậy  n ∈ − 1 ; 1 ; 3 ; 5 thì A là số nguyên.

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

Lời giải:

Với $k\in\mathbb{N}$.

Nếu $n=3k$ thì:

$2^{2n}+2^n+1=2^{6k}+2^{3k}+1=64^k+8^k+1$

$\equiv 1^k+1^k+1\equiv 3\pmod 7$ (loại)

Nếu $n=3k+1$ thì:

$2^{2n}+2^n+1=2^{6k+2}+2^{3k+1}+1$

$=4.64^k+2.8^k+1\equiv 4+2+1\equiv 7\equiv 0\pmod 7$

Nếu $n=3k+2$ thì:

$2^{2n}+2^n+1=2^{6k+4}+2^{3k+2}+1$

$=16.64^k+4.8^k+1\equiv 16+4+1\equiv 0\pmod 7$

Vậy chỉ cần $n$ không chia hết cho $3$ thì $2^{2n}+2^n+1\vdots 7$