Cho tam giác ABC (góc A vuông) có cạnh AB=30 cm; AC=40 cm; BC=50 cm.
a. Tính chiều cao hạ từ A của tam giác ABC.
b. D chính giữa BC, E ở trên AC sao cho AE=AC/3. AD cắt BE ở M. Tính S tam giác AME.
c. So sánh AM và MD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng độ dài hai cạnh AB và AC:
30 - 13 = 17 (cm)
Tổng số phần bằng nhau:
5 + 12 = 17 (phần)
Cạnh AB dài:
17 . 5 : 17 = 5 (cm)
Cạnh AC dài:
17 . 12 : 17 = 12 (cm)
Diện tích tam giác ABC:
5 . 12 : 2 = 30 (cm²)
Tổng độ dài 2 đáy AB và AC là :
30 - 13 = 17 ( cm )
Tổng số phần bằng nhau là
5 + 12 = 17 ( phần )
Cạnh AB dài là
17 : 17 x 5 = 5 ( cm )
Cạnh AC dài là :
17 - 5 = 12 ( cm )
Diện tích hình tam giác vuông ABC là
12 x 5 : 2 = 30 ( m2)
Đáp số : 30 m2
Tổng của hai cạnh AB và AC là: 30-13=17
Độ dài đáy của hình tam giác ABC là: 17: (12+5) *12= 12(cm)
Chiều cao của hình tam giác ABC là: 17:(12+5) * 5=5 (cm)
Diện tích hình tam giác ABC là: 12*5:2=30 (cm2)
ĐS: ....... bạn tự viết nhé
tổng cạnh ab và cạnh ac là
30-13=17
sơ đồ bạn tự vẽ nha
cạnh ab dài là
17:(12+5)x5=5(cm)
cạnh ac dài là
17-5=12 (cm)
diện tích hình tam giác abc là
12x5:2=30 (cm2)
đáp số : 30 cm2
các bn cho mk vài li-ke cho tròn 860 với
Cạnh AC dài \(10:\dfrac{1}{3}=30\left(cm\right)\)
Diện tích ABC là \(\dfrac{1}{2}\times30\times10=150\left(cm\right)\)
Hv : tự túc nha :
Giải :
Tam giác ABC vuông tại A => B + C = 90 độ
=> C = 90 độ - B = 90 độ - 30 = 60độ
Tam giác ABC vuông tại A , theo hệ thức giữa cạnh và góc:"
AB = \(BC.sin30=7.sin30=7\cdot\frac{1}{2}=3,5\)
AC = \(BC.sin60=7\cdot\frac{\sqrt{3}}{2}=\frac{7\sqrt{3}}{2}\)
Xét trong tam giác vuông ABC ta có:
Góc ACB=300
=> ABC=180-90-30=600
Vì góc ACB<ABC(30>60)
=> AB<AC(tính chất cạnh và góc đối diện)
b/Xét tam giác ABE và tam giác DBE có:
BE chung
BAE=BDE=900
ABE=DBE(Phân giác BE của góc ABC)
=> Tam giác ABE= tam giác DBE(ch-gn)
c/ Ta có BE là đường phân giác góc ABC
=> ABE=DBE=60/2=300
=> DBE=ECD=300
=> Tam giác ECB cân tại E
Vì EC là cạnh huyền của tam giác EDC vuông tại D
Mà tam giác ECB cân tại E nên BE cũng là cạnh huyền tam giác ABE
=> BE>AB
=> EC>AB(đpcm)
Tổng độ dài cạnh AB và cạnh AC là:
24-10=14 (cm)
=> Cạnh AB ứng với 3 phần; Cạnh AC ứng với 4 phần.
Cạnh AB là:
14:(3+4)x3=6 (cm)
Cạnh AC là:
14-6=8 (cm)
Diện tích tam giác ABC là:
8x6:2=24 (cm2)
Đ/s: 24 cm2.
K nhé bạn ơi.
a/
\(S_{ABC}=\frac{1}{2}xABxAC=\frac{30x40}{2}=600cm^2\)
\(S_{ABC}=\frac{1}{2}xBCx\)đường cao hạ Từ A->BC \(=\frac{50}{2}x\) đường cao hạ Từ A->BC \(=600cm^2\)
=> đường cao hạ từ A->BC = 2x600:50=24 cm
b/
\(AE=\frac{AC}{3}\Rightarrow\frac{AE}{AC}=\frac{1}{3}\Rightarrow\frac{AE}{CE}=\frac{1}{2}\)
Xét tg ABE và tg BCE có chung đường cao hạ từ B->AC nên
\(\frac{S_{ABE}}{S_{BCE}}=\frac{AE}{CE}=\frac{1}{2}\Rightarrow S_{ABE}=\frac{S_{BCE}}{2}\Rightarrow S_{BCE}=2xS_{ABE}\)
\(S_{ABE}+S_{BCE}=S_{ABE}+2xS_{ABE}=3xS_{ABE}=S_{ABC}=600cm^2\Rightarrow S_{ABE}=200cm^2\)
Xét tg BDE và tg BCE có chung đường cao hạ từ E->BC nên
\(\frac{S_{BDE}}{S_{BCE}}=\frac{BD}{BC}=\frac{1}{2}\Rightarrow S_{BDE}=\frac{S_{BCE}}{2}\)
\(\Rightarrow S_{ABE}=S_{BDE}=200cm^2\) Hai tg này có chung BE nên đường cao hạ từ A->BE = đường cao hạ từ D->BE
Xét tg ABD và tg ABC có chung đường cao hạ từ A->BC nên
\(\frac{S_{ABD}}{S_{ABC}}=\frac{BD}{BC}=\frac{1}{2}\Rightarrow S_{ABD}=\frac{S_{ABC}}{2}\)
Xét tg ABM và tg BDM có chung BM nên
\(\frac{S_{ABM}}{S_{BDM}}=\)đường cao hạ từ A->BE / đường cao hạ từ D->BE = 1 \(\Rightarrow S_{ABM}=S_{BDM}\)
Mà \(S_{ABM}+S_{BDM}=S_{ABD}=2xS_{ABM}\Rightarrow S_{ABM}=\frac{S_{ABD}}{2}=\frac{S_{ABC}}{4}=\frac{600}{4}=150cm^2\)
Ta có \(S_{AME}=S_{ABE}-S_{ABM}=200-150=50cm^2\)
c/ Từ kết quả câu (b) ta có \(S_{ABM}=S_{ADM}\) Hai tg này có chung đường cao hạ từ B->AD nên
\(\frac{S_{ABM}}{S_{BDM}}=\frac{AM}{MD}=1\Rightarrow AM=MD\)