K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
27 tháng 5 2015
Ta sẽ có S(BEC)=S(BDC) vì cùng bằng 1/2 S(ABC)
tam giác BEC và BCD có chung hình BKC--> S(BEK)=S(DKC)(1)
Kẻ AK ta có S(AEK)=S(BED) (2)và S(AKD)=S(DKC)(3)
Từ 1,2 3 suy 4 tam giác trên bằng nhau
=>S(EAK)=S(AKD)=S(DKC) và S(AEK)= 1/2 S(AKC)
AEK và AKC có chung chiều cao kẻ từ A nên đáy EK=1/2KC
=> EK=1/3 EC=21:3=7 cm
và KE=21-7=14 cm
4 tháng 4 2017
14 cm đúng rùi đó
do mình làm trong tờ đề học sinh giỏi cấp tỉnh năm 2010 rùi nên biết
a/
\(S_{ABC}=\frac{1}{2}xABxAC=\frac{30x40}{2}=600cm^2\)
\(S_{ABC}=\frac{1}{2}xBCx\)đường cao hạ Từ A->BC \(=\frac{50}{2}x\) đường cao hạ Từ A->BC \(=600cm^2\)
=> đường cao hạ từ A->BC = 2x600:50=24 cm
b/
\(AE=\frac{AC}{3}\Rightarrow\frac{AE}{AC}=\frac{1}{3}\Rightarrow\frac{AE}{CE}=\frac{1}{2}\)
Xét tg ABE và tg BCE có chung đường cao hạ từ B->AC nên
\(\frac{S_{ABE}}{S_{BCE}}=\frac{AE}{CE}=\frac{1}{2}\Rightarrow S_{ABE}=\frac{S_{BCE}}{2}\Rightarrow S_{BCE}=2xS_{ABE}\)
\(S_{ABE}+S_{BCE}=S_{ABE}+2xS_{ABE}=3xS_{ABE}=S_{ABC}=600cm^2\Rightarrow S_{ABE}=200cm^2\)
Xét tg BDE và tg BCE có chung đường cao hạ từ E->BC nên
\(\frac{S_{BDE}}{S_{BCE}}=\frac{BD}{BC}=\frac{1}{2}\Rightarrow S_{BDE}=\frac{S_{BCE}}{2}\)
\(\Rightarrow S_{ABE}=S_{BDE}=200cm^2\) Hai tg này có chung BE nên đường cao hạ từ A->BE = đường cao hạ từ D->BE
Xét tg ABD và tg ABC có chung đường cao hạ từ A->BC nên
\(\frac{S_{ABD}}{S_{ABC}}=\frac{BD}{BC}=\frac{1}{2}\Rightarrow S_{ABD}=\frac{S_{ABC}}{2}\)
Xét tg ABM và tg BDM có chung BM nên
\(\frac{S_{ABM}}{S_{BDM}}=\)đường cao hạ từ A->BE / đường cao hạ từ D->BE = 1 \(\Rightarrow S_{ABM}=S_{BDM}\)
Mà \(S_{ABM}+S_{BDM}=S_{ABD}=2xS_{ABM}\Rightarrow S_{ABM}=\frac{S_{ABD}}{2}=\frac{S_{ABC}}{4}=\frac{600}{4}=150cm^2\)
Ta có \(S_{AME}=S_{ABE}-S_{ABM}=200-150=50cm^2\)
c/ Từ kết quả câu (b) ta có \(S_{ABM}=S_{ADM}\) Hai tg này có chung đường cao hạ từ B->AD nên
\(\frac{S_{ABM}}{S_{BDM}}=\frac{AM}{MD}=1\Rightarrow AM=MD\)