Trong mặt phẳng tọa độ $O x y$, cho các điểm $A(-1 ; 3), B(2 ; 6), C(5 ; 0)$ và đường thẳng $\Delta: 3 x-y+1=0$. Tìm $M(a ; b)$ nằm trên $\Delta$ thì biểu thức $|\overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{MC}|+|\overrightarrow{M A}+2 \overrightarrow{M B}|$ có giá trị nhỏ nhất.
Gọi G là trọng tâm tam giác ABC. Ta có:
\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=2\\y_G=\dfrac{y_A+y_B+y_C}{3}=3\end{matrix}\right.\) \(\Rightarrow G\left(2;3\right)\)
Do M nằm trên \(\Delta:3x-y+1=0\) nên \(M\left(m;3m+1\right)\). Ta có \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|3\overrightarrow{MG} \right|\) \(=3MG\)
Gọi I là tâm tỉ cự của 2 điểm A, B ứng với bộ số \(\left(1;2\right)\) \(\Rightarrow\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{0}\). Điều này có nghĩa \(\overrightarrow{IB}=\dfrac{1}{3}\overrightarrow{AB}\). Mà \(\overrightarrow{AB}=\left(3;3\right)\) nên \(\overrightarrow{IB}=\left(1;1\right)\) \(\Rightarrow I\left(1;5\right)\)
Với điểm M, ta có \(\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|=\left|\left(\overrightarrow{MI}+\overrightarrow{IA}\right)+2\left(\overrightarrow{MI}+\overrightarrow{IB}\right)\right|\) \(=\left|3\overrightarrow{MI}\right|=3MI\) (do \(\overrightarrow{IA}+2\overrightarrow{IB}=\overrightarrow{0}\))
Từ đó \(\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|+\left|\overrightarrow{MA}+2\overrightarrow{MB}\right|\)
\(=3\left(MG+MI\right)\). Ta sẽ tìm GTNN của \(MG+MI\)
Ta thấy \(MG+MI\ge IG\). Ta lại có \(\left(3.2-3+1\right)\left(3.1-5+1\right)< 0\) nên I và G nằm khác phía so với đường thẳng \(\Delta:3x-y+1=0\). Do đó, \(MG+MI=IG\Leftrightarrow\) M nằm trên IG.
Phương trình đường thẳng IG: \(\dfrac{y-3}{x-2}=\dfrac{5-3}{1-2}=-2\) \(\Leftrightarrow y-3=4-2x\) \(\Leftrightarrow2x+y-7=0\).
M thuộc IG \(\Leftrightarrow2m+\left(3m+1\right)-7=0\) \(\Leftrightarrow m=\dfrac{6}{5}\) \(\Rightarrow M\left(\dfrac{6}{5};\dfrac{23}{5}\right)\)
Vậy điểm \(M\left(\dfrac{6}{5};\dfrac{23}{5}\right)\) thỏa mãn ycbt.