Viết pt đường thẳng biết đồ thị của nó quá A(2; -5) // đường thẳng (d): y=2x-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đồ thị (p) đi qua điểm \(A\left(\dfrac{-1}{2};\dfrac{-1}{4}\right)\) nên ta có:
\(-\dfrac{1}{4}=a.\left(-\dfrac{1}{2}\right)^2\)
\(\Rightarrow-\dfrac{1}{4}=a.\dfrac{1}{4}\Rightarrow a=-1\)
Khi đó hàm số (p) có dạng: \(y=-x^2\)
Gọi phương trình đường thẳng (d) cần tìm là: \(y=ax+b\left(a\ne0\right)\)
Vì (d) song song với đường thẳng \(y=-2x-1\)
\(\Rightarrow\left\{{}\begin{matrix}a=-2\\b\ne-1\end{matrix}\right.\)
Phương trình (d) có dạng \(y=-2x+b\left(b\ne-1\right)\)
Xét phương trình hoành độ tiếp điểm của (p) và (d) :
\(-x^2=-2x+b\)
\(\Leftrightarrow-x^2+2x-b=0\left(1\right)\)
Xét phương trình (1) có \(\Delta=2^2-4.\left(-1\right).\left(-b\right)=4-4b\)
Vì (d) tiếp xúc với (p) \(\Rightarrow\) phương trình (1) có nghiệm kép \(\Leftrightarrow\Delta=0\Leftrightarrow4-4b=0\Leftrightarrow b=1\) (tm \(b\ne-1\) )
Vậy phương trình đường thẳng (d) cần tìm là \(y=-2x+1\)
Vì Parabol (P) đi qua điểm \(A\left(\dfrac{-1}{2};-\dfrac{1}{4}\right)\) nên thỏa mãn:
\(a.\left(-\dfrac{1}{2}\right)^2=-\dfrac{1}{4}\\ \Leftrightarrow a.\dfrac{1}{4}=-\dfrac{1}{4}\\ \Leftrightarrow a=-1\)
Vậy hệ số a của (P) là -1
b,Giả sử pt đường thẳng (d) có dạng y=ax+b
Vì (d) song song với đường thẳng y=-2x-1 nên thỏa mãn:
\(\left\{{}\begin{matrix}a=-2\\b\ne-1\end{matrix}\right.\)
Khi đó phương trình đường thẳng (d) trở thành y=-2x+b
Ta có phương trình hoành độ giao điểm của (d) và (P) là
\(-x^2+2x-b=0\) (*)
Vì pt đường thẳng (d) tiếp xúc với (P) nên phương trình (*) có 1 nghiệm duy nhất tức là \(\Delta\)'=0\(\Leftrightarrow1^2-b=0\\ \Leftrightarrow b=1\left(tmđk\right)\)
Vậy phương trình đường thẳng (d) là y=-2x+1
Gọi (d'): y = ax + b
Do (d') // (d) nên a = -1/2
⇒ (d'): y = -x/2 + b
Do (d') cắt trục hoành tại điểm có hoành độ là 3 nên thay x = 3; y = 0 vào (d') ta có:
-3/2 + b = 0
⇔ b = 3/2
Vậy (d'): y = -x/2 + 3/2
Lời giải
a) A(-1;2)
=> y(-1) =2 <=> a.(-1)^2 =2 => a=2
hàm số được xác định y=2x^2
b) xác đinh tọa độ điểm B
2x^2 =8 => x =+-2
=>có 2 điểm B thỏa mãn
B(2,8) và B'(-2;8)
(d): y=a'x+b'
(d) đi qua A => 2=-a'+b' => b' =2+a'
hay d: y=a'(x+1)+2
(d) đi qua B(2,8) => 8=a'(2+1) +2 => a'=2
(d) đi qu B(-2,8) =>8=a'(-2+1) +2 => a' =-6
vậy
có hai đường thẳng thỏa mãn đầu bài là
d1: y=2x+4
d2:y=-6x-4
đồ thị
Lời giải:
a) $y_M=\frac{-x_M^2}{2}=\frac{-(-3)^2}{2}=\frac{-9}{2}$
Đường thẳng $OM$ có dạng: $y=ax$
$\Rightarrow y_M=ax_M\Leftrightarrow \frac{-9}{2}=a.(-3)$
$\Rightarrow a=\frac{3}{2}$
Vậy ĐT $OM$ là: $y=\frac{3}{2}x$
b) Gọi PTĐT $CE$ có dạng $y=ax+b$
PT hoành độ giao điểm giữa $(P)$ và $CE$ là:
$\frac{-x^2}{2}-ax-b=0$
$\Leftrightarrow x^2+2ax+2b=0(*)$
$(P)$ và $CE$ cắt nhau tại 2 điểm có hoành độ $-1;2$ nghĩa là PT $(*)$ nhân $x=-1$ và $x=2$ là nghiệm
\(\Rightarrow \left\{\begin{matrix} 1-2a+2b=0\\ 4+4a+2b=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{-1}{2}\\ b=-1\end{matrix}\right.\)
Vậy PTĐT $CE$ có dạng $y=-\frac{1}{2}x-1$
\(y'=3x^2+6x-6\)
Tiếp tuyến vuông góc đường thẳng đã cho nên có hệ số góc thỏa mãn:
\(k.\left(-\dfrac{1}{18}\right)=-1\Rightarrow k=18\)
\(\Rightarrow3x^2+6x-6=18\Rightarrow\left[{}\begin{matrix}x=2\Rightarrow y=9\\x=-4\Rightarrow y=9\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}y=18\left(x-2\right)+9\\y=18\left(x+4\right)+9\end{matrix}\right.\)
b: f(-2)=-1/2*(-2)^2=-1/2*4=-2
=>M(-2;-2)
f(1)=-1/2*1^2=-1/2
=>N(1;-1/2)
Gọi (d): y=ax+b là phương trình đường thẳng cần tìm
Theo đề, ta có hệ: -2a+b=-2 và a+b=-1/2
=>a=1/2 và b=-1
=>y=1/2x-1
c: (D)//y=1/2x-1 nên (D): y=1/2x+b
PTHĐGĐ là:
-1/2x^2-1/2x-b=0
=>x^2+x+2b=0
Δ=1^2-4*1*2b=-8b+1
Để (P) cắt (D) tại một điểm duy nhất thì -8b+1=0
=>b=1/8
Ta có
Gọi là một điểm thuộc đồ thị hàm số. Khi đó phương trình tiếp tuyến của đồ thị hàm số đã cho tại điểm M là:
Theo đề bài ta có đường thẳng
+) Phương trình tiếp tuyến của đồ thị hàm số tại là: (tm)
+) Phương trình tiếp tuyến của đồ thị hàm số tại là: ( ktm do ≡ (d) )
Chọn B
Vì (d1)//(d) nên a=2
Vậy: (d1): y=2x+b
Thay x=2 và y=-5 vào (d1), ta được:
b+4=-5
hay b=-9