Tập nghiệm của bất phương trình x 2 - 6 2 x + 18 ≥ 0 là
A. S = 3 2 ; + ∞
B. S = [ 3 2 ; + ∞ )
C. S = ∅
D. S = ℝ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện: x > 2.
Với điều kiện trên , phương trình đã cho trở thành:
x - 3 = x - 3 ⇔ x - 3 ≥ 0 ⇔ x ≥ 3
Kết hợp điều kiện, tập nghiệm của phương trình là S = [ 3 ; + ∞ )
Ta có:
x - 3 x ≤ 0 ⇔ x 1 - 3 x ≤ 0 ⇔ [ x = 0 x > 0 1 - 3 x ≤ 0 ⇔ [ x = 0 x > 0 3 x ≥ 1 ⇔ [ x = 0 x > 0 x ≥ 1 3 ⇔ [ x = 0 x > 0 x ≥ 1 9 ⇔ [ x = 0 x ≥ 1 9
Ta có: 2 x + 1 > 3 x - 2 - x - 3 < 0 ⇔ - x > - 3 - x < 3 ⇔ x < 3 x > - 3 ⇔ - 3 < x < 3
+ Khi m = 0, bất phương trình trở thành - 2 x + 2 < 0 ⇔ x > 1 . Vậy m = 0 không thỏa mãn yêu cầu của bài toán.
+ Khi m ≠ 0 , bất phương trình vô nghiệm khi m x 2 + 2 m - 1 x + m + 2 ≥ 0 , ∀ x ∈ ℝ . ⇔ a > 0 ∆ ' ≤ 0 ⇔ m > 0 ( m - 1 ) 2 - m ( m + 2 ) ≤ 0 .
⇔ m > 0 - 4 m + 1 ≤ 0 ⇔ m > 0 m ≥ 1 4 ⇔ m ≥ 1 4
Chọn C.
Ta có: x 2 - 6 2 x + 18 = x - 3 2 2 ≥ 0 ∀ x
Tập nghiệm của bất phương trình x 2 - 6 2 x + 18 ≥ 0 là S= R.