K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2018

Đáp án D

Bất phương trình mx+ 6< 2x+3m . tương đương với ( m-2) x< 3( m-2)

Hay x< 3 ( với m< 2)

Vậy phần bù của tập nghiệm là 

6 tháng 4 2020

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

7 tháng 4 2020

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

29 tháng 8 2019

a) Ta có: 2. (-2) ≤ 3 nên -2 có là nghiệm của bất phương trình

+) Giải bài tập Toán 10 | Giải Toán lớp 10 không là nghiệm của bất phương trình ,

+) 2π > 3 nên π không là nghiệm của bất phương trình.

+) Giải bài tập Toán 10 | Giải Toán lớp 10 nên √10 không là nghiệm của bất phương trình,

Các số là nghiệm của bất phương trình trên là: -2;

Các số không là nghiệm của bất phương trình trên là: Giải bài tập Toán 10 | Giải Toán lớp 10; π; √10

b)2x ≤ 3 ⇔ x ≤ 3/2

Biểu diễn tập nghiệm trên trục số là:

Giải bài tập Toán 10 | Giải Toán lớp 10

2 tháng 1 2020

Đáp án C

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Bất phương trình 2x+y > 3 là bất phương trình bậc nhất hai ẩn và có vô số nghiệm.

Chọn C.

26 tháng 1 2018

Chọn đáp án D

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) A là tập hợp các ước nguyên dương của 18.

\(A = \{x \in \mathbb N | x \in U(18)\} \)

b) \(B = \{x \in \mathbb R | 2x+1>0\} \)

c) C là tập hợp các cặp số (x;y) thỏa mãn \(2x-y=6\).

\(C = \{(x;y)| 2x-y=6\} \)

28 tháng 6 2018

Chọn D

19 tháng 7 2017

Chọn D

6 tháng 5

 💕

NV
20 tháng 1 2021

Câu 2 bạn ghi thiếu đề

Câu 1:

\(\Leftrightarrow\left(m^2-3m\right)x+2x< 2-m\)

\(\Leftrightarrow\left(m^2-3m+2\right)x< 2-m\)

BPT đã cho vô nghiệm khi và chỉ khi:

\(\left\{{}\begin{matrix}m^2-3m+2=0\\2-m\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\\m\ge2\end{matrix}\right.\) \(\Rightarrow m=2\)