1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10
A.4 B.5 C.9 D.10
2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\)
A. 5 B.6 C.21 D.40
3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x
A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ
4. Tập...
Đọc tiếp
1. bất phương trình \(\frac{3x+5}{2}-1\le\frac{x+2}{3}+x\) có bao nhiêu nghiệm nguyên lớn hơn -10
A.4 B.5 C.9 D.10
2. tổng các nghiệm của bất phương trình x(2-x) ≥ x(7-x) - 6(x-1) trên đoạn \([-10;10]\)
A. 5 B.6 C.21 D.40
3. tập nghiệm S của bất phương trình 5( x+1) - x( 7-x) > -2x
A. R B. \(\left(-\frac{5}{2};+\infty\right)\) C.\(\left(-\infty;\frac{5}{2}\right)\) D. ϕ
4. Tập nghiệm S của bất phương trình x+\(\sqrt{x}< \left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\)
A. (-∞;3) B. (3; +∞) C. [3; +∞) D. (-∞; 3]
5. tổng các nghiệm nguyên của bất phương trình \(\frac{x-2}{\sqrt{x-4}}\le\frac{4}{\sqrt{x-4}}\) bằng
A. 15 B. 26 C. 11 D. 0
6. bất phương trình (m2- 3m )x + m < 2- 2x vô nghiệm khi
A. m ≠1 B. m≠2 C. m=1 , m=2 D. m∈ R
7. có bao nhiêu giá trị thực của tham số m để bất phương trình ( m2 -m )x < m vô nghiệm
A. 0 B.1 C.2 D. vô số
8. gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2 -m)x + m< 6x -2 vô nghiệm. tổng các phần tử trong S là
A. 0 B.1 C.2 D.3
9. tìm tất cả các giá trị thực của tham số m để bất phương trình m2( x-2) -mx +x+5 < 0 nghiệm đúng với mọi x∈ [-2018; 2]
A. m< \(\frac{7}{2}\) B. m= \(\frac{7}{2}\) C. m > \(\frac{7}{2}\) D. m ∈ R
10. tìm tất cả các giá trị thực của tham số m để bất phương trình m2 (x-2) +m+x ≥ 0 có nghiệm x ∈ [-1;2]
A. m≥ -2 B. m= -2 C. m ≥ -1 D. m ≤ -2
Câu 2 bạn ghi thiếu đề
Câu 1:
\(\Leftrightarrow\left(m^2-3m\right)x+2x< 2-m\)
\(\Leftrightarrow\left(m^2-3m+2\right)x< 2-m\)
BPT đã cho vô nghiệm khi và chỉ khi:
\(\left\{{}\begin{matrix}m^2-3m+2=0\\2-m\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\\m\ge2\end{matrix}\right.\) \(\Rightarrow m=2\)