Câu1: Tìm số a,b thuộc N biết:
BCNN(a,b) = 300; ƯCLN(a,b) = 15
Câu2: Tìm a,b biết ab = 2940; BCNN là 210
Câu:3 Tìm a thuộc N, a là số nhỏ nhất có ba chữ số sao cho chia cho 11 dư 5, chia cho 13 dư tám
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì ƯCLN(a,b)=42 nên a=42.m và b=42.n với ƯCLN(m,n)=1
Mặt khác a+b=252 nên 42.m+42.n=252 hay m+n=6
Do m và n nguyên tố cùng nhau nên ta được như sau:
- Nếu m=1 thì a=42 và n=5 thì b=210
- Nếu m=5 thì a=210 và n=1 thì b=42
b) x+3 là ước của 12= {1;2;3;4;6} suy ra x={0;1;3}
c) Giả sử ƯCLN(2n+1; 6n+5)=d khi đó (2n+1) chia hết cho d và (6n+5) chia hết cho d
3(2n+1) chia hết cho d và (6n+5) chia hết cho d
(6n+5) - (6n+3) chia hết cho d syt ra 2 chia hết cho d suy ra d=1; d=2
Nhưng do 2n+1 là số lẻ nên d khác 2. vậy d=1 suy ra ƯCLN(2n+1; 6n+5)=1
Như vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau với bất kỳ n thuộc N (đpcm)
A= n+7/n+5 = n+7-2/n+5= 1+ 2/n+5
=> n thuộc Ư của 2={ -1;-2;1-2}
Mà:n+5=-1 => n=-6
n+5=-2 => n=-7
n+5=1 => n=-4
n+5=2 => n=-3
Vậy n= {-7; -6; -4;-3}
a) \(A=\frac{n+5+2}{n+5}=1+\frac{2}{n+5}\)
\(A\in Z<=>\frac{2}{n+5}\in Z<=>n+5\in U\left(2\right)\)
n+5 | 1 | -1 | 2 | -2 |
n | -4 | -6 | -3 | -7 |
Vậy A thuộc Z <=> n =-4;-6;-3;-7
A đạt GTLN <=> n=-3
bài 1:
Mẫu số của phân số đó là : 30 : (23 - 17) x 23 =115
Tử số của phân số đó là : 115 - 30 = 85
=> Phân số cần tìm là : \(\frac{85}{115}\)
Bài 2:
a) với mọi n
b) \(A=\frac{8n+21}{2n+6}=\frac{8n+24-3}{2n+6}=\frac{4.\left(2n+6\right)-3}{2n+6}=\frac{4\left(2n+6\right)}{2n+6}-\frac{3}{2n+6}\) = \(4-\frac{3}{2n+6}\)
Để A thuộc Z thì \(\frac{3}{2n+6}\in Z\Rightarrow3⋮2n+6\) \(\Rightarrow2n+6\) \(\inƯ\left(3\right)\) \(=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-\frac{9}{2};-\frac{7}{2};-\frac{5}{2};-\frac{3}{2}\right\}\)
mà n \(\in Z\Rightarrow n\in\) rỗng.
vi (a,b)=6 nen a=6k ;b=6h(trong do(h,k)=1) nen 6(k+h)=66 nen h+k=11 ma trong do co 1 so chia het cho 5 nen k=5 ;h=6 hoac k=10 ;h=1 vay 2 so do la (60;6);(30;36)
tick nhenk ban