Cho \(\Delta ABC\) có \(\widehat{A}=40^{\text{°}};\widehat{B}=100^{\text{°}}.\) Từ B kẻ đường thẳng vuông góc với AC tại H.
a) Tính \(\widehat{C}\)
b) Chứng tỏ rằng BH là tia phân giác của \(\widehat{ABC}\)
c) Trên nửa mặt phẳng không chứa điểm B và có bờ là đường thẳng AC, vẽ các tia Ax và Cy cùng song song với BH. Tính \(\widehat{xAB}+\widehat{ABC}+\widehat{BCy}\)
a) Xét tam giác ABC có Góc A + góc B+ góc C = 180 độ ( định í tổng 3 góc trong một tam giác
Suy ra góc C = 40 độ
b) Xét tam giác vuông BHC có góc BAC + góc ABH = 90 độ => góc ABH = 50 độ
Xét tam giác vuông HBC có góc BCA+ góc CBH = 90 độ=> góc CAH = 50 độ
Vì góc ABH = góc CAH
nên BH là phân giác của góc ABH)
c) vì Ax song song với BH
Cy song song với BH
nên Ax vuông góc với AC, Cy vuông góc với AC
Ta có góc BCy = góc BCA + góc ACy= 40 độ + 90 độ = 130 độ
Góc xAB + góc ABC + góc BCy = 90 độ + 60 độ + 130 độ = 280 độ
hình như sai rồi