K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2017

a.góc B = 180-40-70=70
suy ra góc B=góc C 
suy ra tam giác ABC cân tại A
nen AB=AC
ta có góc A<góc B nên BC<AC
vậy AB=AC>BC
b) tam giác ABC cân tại a (chứng minh trên)
suy ra AB=AC=7cm
 

23 tháng 11 2021

\(1,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \text{Mà }\widehat{A}=\widehat{B}=\widehat{C}\\ \Rightarrow\widehat{A}=\widehat{B}=\widehat{C}=\dfrac{180^0}{3}=60^0\\ 2,\widehat{A}+\widehat{B}+\widehat{C}=180^0\\ \Rightarrow\widehat{B}+\widehat{C}=180^0-\widehat{A}=110^0\\ \text{Mà }\widehat{B}-\widehat{C}=10^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{B}=\left(110^0+10^0\right):2=60^0\\\widehat{C}=60^0-10^0=50^0\end{matrix}\right.\)

12 tháng 5 2017

bài này làm được nhưng nhại đánh máy ra.... lên mạng mà search bạn ạ

12 tháng 5 2017

mình lên rồi nhưng ko có

19 tháng 12 2017

A B C M

a) Theo định lí Py-ta-go đảo ta có :

\(\Delta ABC\)có : AC2 + AB2 = BC2 ( 322 + 242 = 402 )

\(\Rightarrow\)\(\Delta ABC\)vuông tại A ( đpcm )

b)Áp dụng định lí Py-ta-go vào \(\Delta AMB\)có :

MB2 = AM2 + AB2 

\(\Rightarrow\)MB2 = 72 + 242 = 625 = 252

\(\Rightarrow\)MB = 25

ta có : M nằm giữa A và C ( vì M thuộc AC ) nên AM + MC = AC

hay  7 + MC = 32

\(\Rightarrow\)MC = 32 - 7 = 25

vì MC = MB nên \(\Delta BMC\)cân tại M

xét \(\Delta BMC\)cân tại M có : \(\widehat{C}=\widehat{MBC}\)

Mà \(\widehat{AMB}\)là góc ngoài của \(\Delta BMC\)nên \(\widehat{AMB}\)\(\widehat{C}+\widehat{MBC}\)hay \(\widehat{AMB}\)\(2\widehat{C}\)( đpcm )

19 tháng 12 2017

Tại sao \(\Delta AMB\)vuông?

22 tháng 11 2021

Tham khảo

Tổng ba góc của một tam giác

22 tháng 11 2021

:v

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: MC=AC-AM=25cm

\(BM=\sqrt{7^2+24^2}=25\left(cm\right)\)

=>MC=BM

=>ΔBMC cân tại M

\(\Leftrightarrow\widehat{BMC}=180^0-2\cdot\widehat{C}\)

hay \(\widehat{AMB}=2\cdot\widehat{C}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Theo đề bài ta có AB = 4cm, BC = 7cm, AC = 6cm

Có góc đối diện với cạnh AB là góc C, góc A đối diện với cạnh BC, góc B đối diện với cạnh AC

Theo định lí về góc đối diện với cạnh lớn hơn thì lớn hơn ta có :

\( \Rightarrow \widehat A > \widehat B > \widehat C\)

b)

Vì \(\widehat{A}=\widehat{C}\) nên tam giác ABC cân tại B

\( \Rightarrow BA = BC\)

Áp dụng định lí tổng 3 góc trong tam giác ABC, có:

\( \Rightarrow \widehat B = {180^o} - {100^0} = {80^o}\)

\( \Rightarrow \widehat B > \widehat A=\widehat C\)

\( \Rightarrow AC\) là cạnh lớn nhất tam giác ABC (Quan hệ giữa góc và cạnh đối diện trong tam giác)

Bài làm

a) Xét ∆ABC vuông tại B có:

^BAC + ^C = 90°

Hay ^BAC + 30° = 90°

=> ^BAC = 60° 

Vì AD là phân giác của góc BAC.

=> ^DAC = 60°/2 = 30°

Xét tam giác ADC có:

^DAC + ^ACD + ^ADC = 180°

Hay 30° + 30° + ^ADC = 180°

=> ^ADC = 180° - 30° - 30°

=> ^ADC = 120°

b) Xét tam giác ABD và tam giác AED có:

AB = AE ( gt )

^BAD = ^EAD ( Do AD phân giác )

Cạnh AD chung.

=> ∆ABD = ∆AED ( c.g.c )

c) Vì ∆ABD = ∆AED ( cmt )

=> ^ABD = ^AED = 90°

=> DE vuông góc với AC tại E                (1)

Ta có: ^DAC = ^DCA = 30°

=> ∆DAC cân tại D.

=> AD = DC

Xét tam giác DEA và tam giác DEC có:

Góc vuông: ^DEA = ^DEC ( = 90° )

Cạnh huyền AD = DC ( cmt )

Góc nhọn: ^DAC = ^DCA ( cmt )

=> ∆DEA = ∆DEC ( g.c.g )

=> AE = EC 

=> E là trung điểm của AC.                       (2)

Từ (1) và (2) => DE là trung trực của AC ( đpcm )

9 tháng 12 2016

A B C M N O

Bài này mình thấy chứng minh phần b trước thì ra phần a luôn =)))

b)Tam giác ABC có 2 góc bằng nhau: \(\widehat{ABC}=\widehat{ACB}\) =>Tam giác ABC cân tại A => AB=AC (1)

Tia BM là tia phân giác của góc ABC => \(\widehat{ABM}=\widehat{BM}C=\frac{1}{2}.\widehat{ABC}\)

Tia CN là tia phân giác của góc ACB => \(\widehat{ACN}=\widehat{NCB}=\frac{1}{2}.\widehat{ACB}\)

\(\widehat{ABC}=\widehat{ACB}\) <=> \(\frac{1}{2}.\widehat{ABC}=\frac{1}{2}.\widehat{ACB}\) => \(\widehat{ABM}\)\(=\widehat{ACN}\) (2)

Xét \(\Delta ABM\)\(\Delta ACN\) có:

  • \(\widehat{BAC}\) là góc chung
  • AB=AC (suy ra ở (1))
  • \(\widehat{ABM}\)\(=\widehat{ACN}\) (suy ra ở (2))
=>\(\Delta ABM\)=\(\Delta ACN\) (g.c.g) (đpcm)a)Theo chứng minh phần b ta có:\(\Delta ABM\)=\(\Delta ACN\) => BM=CN (2 cạnh tương ứng)