Biện luận số nghiệm trong \(\left[-\pi;\frac{4\pi}{3}\right]\)của pt: \(\sin x\left(\cos x-m\right)=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình có dạng: \(\left(x-4\right)\left|x-2\right|=-m\)
Vẽ đồ thị hàm số \(y=\left(x-4\right)\left(x-2\right)=x^2-6x+8\) với phần \(x< 2\) lấy đối xứng qua trục hoành sẽ được đồ thị \(y=\left(x-4\right)\left|x-2\right|\)
Phác thảo như sau:
Nhìn vào đồ thị, ta biện luận được:
- Nếu \(-m< -1\Rightarrow m>1\) phương trình có 1 nghiệm duy nhất
- Nếu \(\left[{}\begin{matrix}-m=-1\\-m=0\end{matrix}\right.\) hay \(\left[{}\begin{matrix}m=0\\m=1\end{matrix}\right.\) thì pt có 2 nghiệm
- Nếu \(-1< -m< 0\) hay \(0< m< 1\) thì pt có 3 nghiệm pb
Phương trình tương đương
\(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)\left(x-2\right)\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left(m-1\right)x+2=\left(m+1\right)x-2m-2\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}\left(m-1-m-1\right)x=-2m-4\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}-2x=-2m-4\\x\ne2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}x=m+2\\x\ne2\end{matrix}\right.\)
Nếu m = 0 thì phương trình vô nghiệm
Nếu m ≠ 0 thì S = {m + 2}
biện luận theo m số nghiệm âm, số nghiệm dương của pt sau
\(mx^2+\left(m^2-3m+1\right)-2m^2+3m-1=0\)
\(ax^3-\left(a+2\right)x^2+3x-1=0\) (1)
\(ax^3-\left(a+2\right)x^2+3x-1=0\Leftrightarrow\left(x-1\right)\left(ax^2-2x+1\right)=0\)
\(\Leftrightarrow\begin{cases}x-1=0\\ax^2-2x+1=0\end{cases}\left(2\right);\left(3\right)\)
Nhận xét rằng phương trình \(x-1=0\) (2) luôn có nghiệm x = 1
Phương trình \(ax^2-2x+1=0\) (3) có nghiệm x=1 khi và chỉ khi a=1.
Khi đó x=1 là nghiệm kép của (3)
- Nếu a=0 thì (3) có nghiệm \(x=\frac{1}{2}\)
- Nếu \(a\ne0\) thì (3) là phương trình bậc hai có \(\Delta'=1-a\)
+ Nếu \(\Delta'<0\)
hay a>1 thì ( 3) vô nghiệm
+ Nếu a<1, \(a\ne0\) thì \(\Delta'>0\)
nên phương trình (3) có hai nghiệm \(x_{1;2}=\frac{1\pm\sqrt{1-a}}{a}\)
Theo nhận xét trên thì hai nghiệm này cùng khác 1. Ta có kết luận
- Nếu \(a\ge1\) thì (1) có một nghiệm x=1 ( khi a=1 thì x = 1 là nghiệm bội ba)
- Nếu a = 0 thì (1) có hai nghiệm phân biệt \(x=1;x=\frac{1}{2}\)
- Nếu a < 1, \(a\ne0\) thì (1) có ba nghiệm phân biệt
x = 1, \(x=\frac{1-\sqrt{1-a}}{a};x=\frac{1=\sqrt{1-a}}{a}\)
Xét phương trình \(tanx = 3\)\( \Leftrightarrow \;x{\rm{ }} \approx {\rm{ }}1,25{\rm{ }} + {\rm{ }}k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}\).
Do \( - \frac{\pi }{2} < x < \frac{{7\pi }}{3} \Leftrightarrow - \frac{\pi }{2} < 1,25{\rm{ }} + {\rm{ }}k\pi < \frac{{7\pi }}{3}\)\( \Leftrightarrow - 0,9 < k < 1,94,\)\(k\; \in \;\mathbb{Z}\).
Mà k ∈ ℤ nên k ∈ {0; 1}.
Vậy có 2 nghiệm của phương trình đã cho nằm trong khoảng \(\left( { - \frac{\pi }{2};\frac{{7\pi }}{3}} \right)\).
Đáp án: B
tìm số nghiệm pt: \(sin\left(x+\dfrac{\Pi}{3}\right)=\dfrac{1}{2}\) trên \(\left[-\Pi;-2\Pi\right]\)
\(\Leftrightarrow\sin x+\dfrac{\pi}{3}=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow2x=\dfrac{\pi}{6}+k2\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{12}+k\pi\left(k\in Z\right)\)
Vì x ∈ \(\left[-\pi;-2\pi\right]\) ta có:
\(-2\pi\le\dfrac{\pi}{12}+k\pi\le-\pi\)
\(\Leftrightarrow\dfrac{-25\pi}{12}\le k\pi\le-\dfrac{13\pi}{12}\)
\(\Leftrightarrow-\dfrac{25}{12}\le k\le-\dfrac{13}{12}\)
\(\Leftrightarrow-6.5\approx-\dfrac{25}{12}\le k\le-\dfrac{13}{12}\approx-3.4\)
Do k ∈ Z nên k = -1
Vậy PT có 1 nghiệm / \(\left[-\pi;-2\pi\right]\)
Ta có: $sin(\frac{\pi}{6})=\frac{1}{2}$
Do đó $sin(\frac{\pi}{6})=sin(x+ \frac{\pi}{3})\Leftrightarrow \left[\begin{matrix} \frac{\pi}{6}=x+\frac{\pi}{3}+2k\pi & \\ \frac{\pi}{6}= \pi-x-\frac{\pi}{3}+2k\pi& \end{matrix}\right.,k\in\mathbb{Z}$
$\Leftrightarrow \left[\begin{matrix} x=-\frac{\pi}{6}-2k\pi& \\ x=\frac{\pi}{2}+2k\pi& \end{matrix}\right.k\in\mathbb{Z}$
Vì $x \in [-\pi;-2\pi]$ nên ta có:
$\left[\begin{matrix} -\pi\ge \frac{-\pi}{6}-2k\pi\ge-2\pi & \\ -\pi\ge \frac{\pi}{2}+2k\pi\ge-2\pi \end{matrix}\right.\Leftrightarrow \left[\begin{matrix} -\frac{5\pi}{6}\ge -2k\pi\ge-\frac{11\pi}{6} & \\ -\frac{3\pi}{2}\ge +2k\pi\ge-\frac{5\pi}{2} \end{matrix}\right.\Leftrightarrow \left[\begin{matrix} \frac{5}{12}\le k\le \frac{11}{12} & \\ -\frac{3}{4}\ge k \ge-\frac{5}{4} & \end{matrix}\right.$
Vì $k\in\mathbb{Z}$ nên:
$k=-1$
Vậy phương trình có 1 nghiệm trên $[-\pi;-2\pi]$
P/s: em mới học lớp 10 nên không biết làm thế này có đúng không ạ