So sánh hai số A và B biết:
a) \(A=99994\cdot99999\cdot99992-99996\cdot99998\cdot99991;\)
\(B=44443\cdot44448\cdot44441-44445\cdot44440\cdot44447\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\overline{a,65}+\overline{4,bc}\)
\(=a+0,65+4+0,1b+0,01c\)
\(=a+4,65+0,1b+0,01c\)
\(B=\overline{a,b}+3,5+\overline{1,2c}\)
\(=a+0,1b+3,5+1,2+0,01c\)
\(=a+4,7+0,1b+0,01c\)
Ta có: A=a+4,65+0,16+0,01c
B=a+4,7+0,1b+0,01c
mà 4,65<4,7
nên A<B
A=1-1/(2013*2014)
B=1-1/(2014*2015)
2013*2014<2014*2015
=>1/2013*2014>1/2014*2015
=>-1/2013*2014<-1/2014*2015
=>A<B
A=2011^2012-2011^2011= 2011^2011 * 2011 -2011^2011= 2011^2011 *(2011-1)= 2011^2011 *2010
B=2011^2013-2011^2012=2011^2012*2011- 2011^2012= 2011^2012 *(2011-1) = 2011^2012 *2010
vì 2011^2011*2010 < 2011^2012*2010 nên A<B
Ta có : 2011^2013 x M = (2010^2012 x 2011 + 2011^2013)^2013 > (2010^2013 + 2011^2013)^2013 = N x (2010^2013 + 2011^2013)
Do đó: 2011^2013 x M > N x (2010^2013 + 2011^2013)
<=> M > N x [(2010/2011)^2013 + 1] ==> M > N (điều phải chứng minh)