Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a - 3 > b - 3 ⇒ ( a - 3 ) + 3 > ( b - 3 ) + 3 ⇔ a > b
Chọn đáp án C.
Ta có a - 3 > b - 3 ⇒ ( a - 3 ) + 3 > ( b - 3 ) + 3 ⇔ a > b
Chọn đáp án C.
A=\(2016^2=2016.2016\)
B=\(2015.2017=(2015+1)(2017-1)=2016.2016\)
=> A=B = 2016.2016
\(B=2015.2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1< 2016^2=A\)
Ta có: \(\frac{a}{b}=\frac{a\left(b+2016\right)}{b\left(b+2016\right)}=\frac{ab+2016a}{b\left(b+2016\right)}\) ;
\(\frac{a+2016}{b+2016}=\frac{b\left(a+2016\right)}{b\left(b+2016\right)}=\frac{ab+2016b}{b\left(b+2016\right)}\)
Với a = b thì \(\frac{a}{b}=\frac{a+2016}{b+2016}\)
Với a < b thì \(\frac{a}{b}< \frac{a+2016}{b+2016}\)
Với a > b thì \(\frac{a}{b}>\frac{a+2016}{b+2016}\)
Với ba số a, b và c mà c > 0, ta có: Nếu a ≤ b thì ac ≤ bc
Khi đó, ta có: a + 1 ≤ b + 2 ⇒ 2( a + 1 ) ≤ 2( b + 2 ) ⇔ 2a + 2 ≤ 2b + 4.
Chọn đáp án C.
Với ba số a, b và c mà c > 0, ta có: Nếu a ≤ b thì ac ≤ bc
Khi đó, ta có: a + 1 ≤ b + 2 ⇒ 2( a + 1 ) ≤ 2( b + 2 ) ⇔ 2a + 2 ≤ 2b + 4.
Chọn đáp án C.
\(A=2015.2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1\)
\(< 2016^2=B\)
Nên A<B
\(B=2016^2\)
\(\Rightarrow B=\left(2017-1\right)^2\)
\(\Rightarrow B=2017^2-4034+1=2017^2-4033\)(1)
Lại Có :
\(A=2015.2017=\left(2017-2\right).2017\)
\(\Rightarrow A=2017^2-4034\)(2)
Từ (1) và (2) => B>A