Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, vì n^3+3n^2+2^n chia hết cho 6 nên:
n=3+3-2+2 chia hết cho 6
n= 2
b,n= 13-5 = n vậy nên:
suy ra : 5-13= n
vậy n =(-8)
k nha gagagagagaggaga
P = 1 + ( 22 + 23 ) + ( 24 + 25 ) + ( 26 + 27 )
P = 1 + 2 . ( 1 + 2 ) + 2 . ( 1 + 2 ) + 2 . ( 1 + 2 )
P = 1 + 2 . 3 + 2 . 3 + 2 . 3
Mỗi cặp đều có số 3
=> P = 1 + 22 + 23 + 24 + 25 + 26 + 27 chia hết cho 3
\(P=1+2^2+2^3+2^4+2^5+2^6+2^7\)
\(P=1+\left(2^2+2^3\right)+\left(2^4+2^5\right)+\left(2^6+2^7\right)\)
\(P=1+2^2\left(1+3\right)+2^4\left(1+2\right)+2^6\left(1+2\right)\)
\(P=1+2^2.3+2^4.3+2^6.3\)
\(P=\left(1+2^2+2^4+2^6\right).3⋮3\left(đpcm\right)\)
Ta có:
$A=1+2^2+2^4+2^6+...+2^{20}+2^{22}$
$=(1+2^2+2^4)+(2^6+2^8+2^{10})+(2^{12}+2^{14}+2^{16})+(2^{18}+2^{20}+2^{22})$
$=21+2^6\cdot(1+2^2+2^4)+2^{12}\cdot(1+2^2+2^4)+2^{18}\cdot(1+2^2+2^4)$
$=21+2^6\cdot21+2^{12}\cdot21+2^{18}\cdot21$
$=21\cdot(1+2^6+2^{12}+2^{18})$
Vì $21\vdots7$
nên $21\cdot(1+2^6+2^{12}+2^{18})\vdots7$
hay $A\vdots7$ (1)
Lại có:
$A=1+2^2+2^4+2^6+...+2^{20}+2^{22}$
$=(1+2^2+2^4+2^6)+(2^8+2^{10}+2^{12}+2^{14})+(2^{16}+2^{18}+2^{20}+2^{22})$
$=85+2^8\cdot(1+2^2+2^4+2^6)+2^{16}\cdot(1+2^2+2^4+2^6)$
$=85+2^8\cdot85+2^{16}\cdot85$
$=85\cdot(1+2^8+2^{16})$
Vì $85\vdots17$
nên $85\cdot(1+2^8+2^{16})\vdots17$
hay $A\vdots17$ (2)
Mặt khác: $(7,17)=1$ (3)
Từ (1); (2) và (3) $\Rightarrow A\vdots 7\cdot17=119$
$\text{#}Toru$
a) 2A=2^2+2^3+...+2^100
A= 2A-A= 2^100-2 không phải là số chính phương
A+2 = 2^100 là số chính phương
b) 20.448 =2.2.5.296 = 298.5 > 298.4 > 2100 > A
c) 2100 - 2 = 299.2-2=833.2 -2 => n rỗng
d) ta có: 24k chia 7 dư 2
2100-2 = 24.25-2 chia hết chp 7
e) ta có: 24k chia 6 dư 4
2100-2 = 24.25-2 chia 6 dư 2
f) ta có: 24k tận cùng 6
2100-2 = 24.25-2 tận cùng 4
A = 2 + 22 + 23 + 24 + … + 2100
A = (2 + 22) + (23 + 24) + … + (299 + 2100)
A = 6 + 22 . (2 + 22) + … + 298 . (2 + 22)
A = 6 + 22 . 6 + … + 298 . 6
A = 6 . (1 + 22 + … + 298)
Vậy A chia hết cho 6 (theo tính chất chia hết của một tích).
Số số hạng của A:
\(100-1+1=100\) (số)
Do \(100⋮2\) nên ta có thể nhóm các số hạng của A thành các nhóm mà mỗi nhóm có 2 số hạng như sau:
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(=6+2^2.\left(2+2^2\right)+...+2^{98}.\left(2+2^2\right)\)
\(=6+2^2.6+...+2^{98}.6\)
\(=6.\left(1+2^2+...+2^{98}\right)⋮6\)
Vậy \(A⋮6\)