Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét tam giác ABE và tam giác ADE
AE chung
góc BAE = góc DAE(AE la tia phân giác của góc E)
AB = AD ( gt)
=> tam giác ABE = tam giac DAE ( c.g.c)
b) xét tam giác ABI và tam giác ADI
AI chung
góc BAE = góc DAE
tam giác ABI=tam giác ADI
=> BI = DI ( 2 cạnh t/ứ )
=> I là trung điểm của BD
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
Suy ra: BH=CH
b: BH=CH=6cm
=>AH=8cm
c: Xét ΔAHE có
AK là đường cao
AK là đường trung tuyến
Do đó: ΔAHE cân tại A
hay AE=AH
d: Xét ΔADH có
AI là đường cao
AI là đườngtrung tuyến
Do đó:ΔADH cân tại A
=>AD=AH=AE
=>ΔADE cân tại A
a) Xét △AHI và △ADI có:
AH = AD (gt)
AI: chung
IH = ID (I: trung điểm HD)
=> △AHI = △ADI (c.c.c)
b) Xét △HAC có: HAC + AHC + HCA = 180o (định lí tổng ba góc △)
=> HAC = 180o - AHC - HCA
=> HAC = 180o - 90o - 30o
=> HAC = 60o (1)
Vì △AHI = △ADI => AH = AD (2 cạnh tương ứng) (2)
Từ (1) và (2) => △ADH đều
c) Vì △AHI = △ADI => IAH = IAD (2 góc tương ứng)
Hay KAH = KAD
Xét △AHK và △ADK có:
AH = AD (cmt)
KAH = KAD (cmt)
AK: chung
=> △AHK = △ADK (c.g.c)
=> AHK = ADK (2 góc tương ứng)
=> ADK = 90o
=> DK \(\perp\) AD (*)
Lại có BAD = 90o => AB \(\perp\) AD (**)
Từ (*) và (**) => AB // DK
d) Vì △HAD đều => HAD = 60o
Mà KAH = KAD (cmt) => KAD = 30o
Xét △KAD có: KAD = KCA (= 30o)
=> △KAC cân tại K
Mà KD \(\perp\)AC
=> KD là đường cao △KAC cũng vừa là đường trung trực
Vậy khi đó thì DA = DC
Mà AH = AD => AH = DC
Lại có HA = HE và AH = DC => HE = DC
Xét △KEH và △KCD có:
EHK = CDK (= 90o)
KH = KD (△KAH = △KAD)
HE = DC (cmt)
=> △KEH = △KCD (2cgv)
=> EKH = CKD (2 góc tương ứng)
Có: EKH + EKC = 180o
=> CKD + CKE = 180o
=> EKD = 180o
=> E, K, D thẳng hàng
ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
mấy bạn bớt nhắn linh tinh lên đây đi, olm là nơi học bài và hỏi bài chứ không phải nhắn lung tung
Câu a và câu b tham khảo tại link: Câu hỏi của Aftery - Toán lớp 7 - Học toán với OnlineMath
c) Xét \(\Delta\)ABE có AH vuông góc với AE và; HA = HE
=> AH là đường cao đồng thời là đường trung tuyến của \(\Delta\)ABE
=> \(\Delta\)ABE cân tại B
=> AB = BE
d) Ta có: SN vuông AH ; BC vuông AH
=> SN //BC
=> NK //MC
=> ^KNI = ^MCI
mặt khác có: NK = MC ; IN = IC ( gt)
=> \(\Delta\)NIK = \(\Delta\)CIM
=> ^NIK = ^CIM mà ^NIK + ^KIC = 180o
=> ^CIM + ^KIC = 180o
=> ^KIM = 180o
=>M; I ; K thẳng hàng
Xét tam giác ABH và tam giác KHC ta có
AH=HK (gt)
BH=HC ( H là trung điểm BC)
góc AHB=góc KHC (=90)
-> tam giác ABH= tam giác KHC (c-g-c)
b)
Xét tam giác ABH và tam giác AHC ta có
AH=AH (cạnh chung)
BH=HC ( H là trung điểm BC)
AB=AC (ggt)
-> tam giác ABH= tam giác AHC (c-c-c)
-> góc AHB= góc AHC (2 góc tương ứng)
mà góc AHB + góc AHC =180 ( 2 góc kề bù)
nên góc AHB + góc ABH=180
->2 góc AHB=180
-> góc AHB =180 :2 =90
=> AH vuông góc BC tại H
c) Xét tam giác BDH và tam giác HAB ta có
BH=BH ( cạnh chung)
góc DBH= góc BHA (=90)
góc DHB= goc1HBA ( 2 góc sole trong và AB//DH)
-> tam giác BDH=tam giác HAB ( g-c-g)
-> DH=AB ( 2 cạnh tương ứng)
d) ta có DH=AB (cmt)
KC=AB ( tam giác AHB= tam giác KHC)
-> DH = KC
ta có góc BAH = góc HKC ( tam giác AHB= tam giác KHC)
mà 2 góc nằm ở vị trí sole trong
nên AB//CK
mặt khác AB//DH (gt)
do đó CK//DH
Xét tam giác DHI và tam giác CKI ta có
HI=IK (I là trung điểm HK)
DH=Ck (cmt)
góc IHD=góc IKC (2 góc sole trong và DH//CK)
-> tam giác DHI= tam giác CKI (c-g-c)
-> góc DHI = góc CIK (2 góc tương ứng
mà góc CIK + góc HIC =180 ( 2 góc kề bù)
nên góc DHI+ góc HIC =180
-> góc DIC =180
-> D,I,C thẳng hàng
câu d đề có thiếu ko vậy bạn .vì nếu lấy K và Q bất kì nó có thể ko thẳng hàng á