K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
5 tháng 6 2024

Đề bài thiếu rồi, bạn xem lại nhé.

5 tháng 6 2024

Mk ko bt làm thì bảo vô tri:)))))))))))))))))))))))))

10 tháng 4 2017

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

=> \(\dfrac{abc}{ac+bc}=\dfrac{abc}{ab+ac}=\dfrac{abc}{bc+ab}\)

=> ac + bc = ab + ac = bc + ab (do abc \(\ne0\))

=> ac + bc - ab - ac = 0

=> bc - ab = 0

=> b(c - a) = 0

Mà b \(\ne0\) nên c - a = 0 => c = a

Tương tự ta có: a = b

Từ đó có: a = b = c

Thay vào M được:

\(M=\dfrac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

NV
9 tháng 12 2018

Do \(a,b,c\ne0\)

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ac}{a+c}\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{a+c}{ac}\)

\(\Rightarrow\dfrac{a}{ab}+\dfrac{b}{ab}=\dfrac{b}{bc}+\dfrac{c}{bc}=\dfrac{a}{ac}+\dfrac{c}{ac}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{c}\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}\\\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{c}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=c\\b=a\end{matrix}\right.\) \(\Rightarrow a=b=c\)

\(\Rightarrow M=\dfrac{a.a+a.a+a.a}{a^2+a^2+a^2}=\dfrac{3a^2}{3a^2}=1\)

20 tháng 12 2017

Ta có:

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}\)

<=> \(ab\cdot\left(b+c\right)=bc\cdot\left(a+b\right)\)

<=> \(b^2\cdot\left(a-c\right)=0\)

<=> \(a=c\)

Làm tương tự ta được \(b=a\) => a=b=c

=> M=1

21 tháng 3 2017

1) Tham khảo nhé bạn : https://hoc24.vn/hoi-dap/question/211933.html

Chúc bn học tốt nhé!!!ok

12 tháng 3 2017

1)\(\dfrac{x+1}{-12}=\dfrac{-3}{x+1}\)

\(\Rightarrow\left(x+1\right)^2=36\)

\(\Rightarrow\left[{}\begin{matrix}x+1=6\\x+1=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=5\\x=-7\end{matrix}\right.\)

Vậy....

b)\(\left(\dfrac{1}{2}-2^2:\dfrac{4}{3}\right).\dfrac{6}{5}-7\)

\(=\left(\dfrac{1}{2}-4.\dfrac{3}{4}\right).\dfrac{6}{5}-7\)

\(=\left(\dfrac{1}{2}-3\right).\dfrac{6}{5}-7\)

\(=\dfrac{-5}{2}.\dfrac{6}{5}-7\)

\(=-3-7\)

\(=-10\)

12 tháng 3 2017

Câu 1:

1/ Tìm x:(mk nghĩ là z)

\(\dfrac{x+1}{-12}=\dfrac{-3}{x+1}\Rightarrow\left(x+1\right)^2=\left(-3\right).\left(-12\right)=36\)

\(\Rightarrow x+1=6;x+1=-6\)

+) \(x+1=6\Rightarrow x=5\)

+) \(x+1=-6\Rightarrow x=-7\)

2/Tính:

\(\left(\dfrac{1}{2}-2^2:\dfrac{4}{3}\right).\dfrac{6}{5}-7=\left(\dfrac{1}{2}-\dfrac{4.3}{4}\right).\dfrac{6}{5}-7\)

\(=\left(\dfrac{1}{2}-3\right).\dfrac{6}{5}-7=\left(\dfrac{1}{2}.\dfrac{6}{5}\right)-\left(3.\dfrac{6}{5}\right)-7\)

\(=0,6-3,6-7=-10\)

28 tháng 9 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

a, Ta có: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{bk.b}{dk.d}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}\)

\(\Rightarrow\dfrac{b^2.k}{d^2.k}=\dfrac{\left[b.\left(k+1\right)\right]^2}{\left[d.\left(k+1\right)\right]^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\) \(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

b, Ta có:\(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{bk.b}{dk.d}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}\)

\(\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2.k^2+b^2}{d^2.k^2+d^2}\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}\)

\(\Rightarrow\dfrac{b^2}{d^2}=\dfrac{b^2}{d^2}\Rightarrow\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)

CHÚC BẠN HỌC TỐT!!

28 tháng 9 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\)=>\(\dfrac{a}{c}=\dfrac{b}{d}\)( áp dụng tỉ lệ thức )

Ta đặt:

\(\dfrac{a}{c}=\dfrac{b}{d}=k\) => a=ck ; b=dk

a) \(\dfrac{ab}{cd}=\dfrac{ck.dk}{cd}=\dfrac{k^2.\left(c.d\right)}{c.d}=k^2\) (1)

\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(ck+dk\right)^2}{\left(c+d\right)^2}=\dfrac{k^2.\left(c+d\right)^2}{\left(c+d\right)^2}=k^2\) (2)

Từ (1) và (2) suy ra \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

b) \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(ck\right)^2+\left(dk\right)^2}{c^2+d^2}=\dfrac{c^2k^2+d^2k^2}{c^2+d^2}=\dfrac{k^2.\left(c^2+d^2\right)}{c^2+d^2}=k^2\) (3)

Từ (1) và (3) suy ra \(\dfrac{ab}{cd}=\dfrac{a^2+b^2}{c^2+d^2}\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Lời giải:

a) \(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{n-1}-1\right)\left(\frac{1}{n}-1\right)\)

\(=\frac{1-2}{2}.\frac{1-3}{3}.\frac{1-4}{4}...\frac{-(n-2)}{n-1}.\frac{-(n-1)}{n}\)

\(=\frac{(-1)(-2)(-3)...[-(n-2)][-(n-1)]}{2.3.4...(n-1)n}\)

\(=\frac{(-1)^{n-1}(1.2.3....(n-2)(n-1))}{2.3.4...(n-1)n}=(-1)^{n-1}.\frac{1}{n}\)

b) \(B=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{n^2}-1\right)\)

\(=\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}.....\frac{1-n^2}{n^2}\)

\(=\frac{(-1)(2^2-1)}{2^2}.\frac{(-1)(3^2-1)}{3^2}....\frac{(-1)(n^2-1)}{n^2}\)

\(=(-1)^{n-1}.\frac{(2^2-1)(3^2-1)...(n^2-1)}{2^2.3^2....n^2}\)

\(=(-1)^{n-1}.\frac{(2-1)(2+1)(3-1)(3+1)...(n-1)(n+1)}{2^2.3^2....n^2}\)

\(=(-1)^{n-1}.\frac{(2-1)(3-1)...(n-1)}{2.3...n}.\frac{(2+1)(3+1)...(n+1)}{2.3...n}\)

\(=(-1)^{n-1}.\frac{1.2.3...(n-1)}{2.3...n}.\frac{3.4...(n+1)}{2.3.4...n}\)

\(=(-1)^{n-1}.\frac{1}{n}.\frac{n+1}{2}=(-1)^{n-1}.\frac{n+1}{2n}\)

1 tháng 1 2018

Ta có \(\dfrac{ab}{a+b}\)=\(\dfrac{bc}{b+c}\)=\(\dfrac{ca}{c+a}\)

\(=>\)\(\dfrac{a+b}{ab}\)=\(\dfrac{b+c}{bc}\)=\(\dfrac{c+a}{ca}\)

\(=>\)\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)=\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)=\(\dfrac{1}{c}\)+\(\dfrac{1}{a}\)

\(=>\)\(\dfrac{1}{b}\)+\(\dfrac{1}{a}\)=\(\dfrac{1}{c}\)+\(\dfrac{1}{b}\)

\(\dfrac{1}{c}\)+\(\dfrac{1}{b}\)=\(\dfrac{1}{a}\)+\(\dfrac{1}{c}\)

\(\dfrac{1}{a}\)+\(\dfrac{1}{c}\)=\(\dfrac{1}{b}\)+\(\dfrac{1}{a}\)

\(=>\)\(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\)

\(=>\)a=b=c

Vậy: M=\(\dfrac{ab+bc+ca}{a^2+b^2+c^2}=\dfrac{a^2+a^2+a^2}{a^2+a^2+a^2}\)

= 1

27 tháng 12 2017

mình bt nè