Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn vẽ hình chưa??? vẽ chuẩn xác là sẽ vuông
còn mình cần cách chứng minh kia
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>DA=DE
=>ΔDAE cân tại D
=>góc DAE=góc DEA
c: BA=BE
DA=DE
=>BD là trung trực của AE
a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))
Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)
Suy ra: BA=BH(hai cạnh tương ứng)
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có; ΔAMB=ΔAMC
=>\(\widehat{AMB}=\widehat{AMC}\)
mà \(\widehat{AMB}+\widehat{AMC}=180^0\)(hai góc kề bù)
nên \(\widehat{AMB}=\widehat{AMC}=\dfrac{180^0}{2}=90^0\)
=>AM\(\perp\)BC
c: Xét ΔABI vuông tại B và ΔACI vuông tại C có
AI chung
AB=AC
Do đó: ΔABI=ΔACI
=>IB=IC
d: Ta có: IB=IC
=>I nằm trên đường trung trực của BC(1)
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là trung trực của BC(2)
Từ (1) và (2) suy ra A,M,I thẳng hàng
Gọi O là giao điểm của AE và BI.
Do I là trung điểm của AC nên AI = IC.
Gọi H là hình chiếu của I lên BC.
Do HI vuông góc với BC nên tam giác BHI và CHI là các tam giác vuông cân tại I.
Trong tam giác BHI, ta có $$BH^2 + IH^2 = BI^2$$.
Trong tam giác CHI, ta có $$CH^2 + IH^2 = CI^2$$.
Cộng ta được $$BH^2 + CH^2 + 2IH^2 = BI^2 + CI^2$$.
Nhưng $$BH + CH = BC$$ và $$BI^2 + CI^2 = BC^2$$ (do tam giác BIC là tam giác vuông tại I), nên ta có $$BC^2 + 2IH^2 = BC^2$$.
Điều này chỉ ra rằng $$IH = 0$$, tức là I trùng với H.
Do I trùng với H, điểm I nằm trên BC. Vì vậy, đường thẳng AE (đường thẳng vuông góc với BC tại E) sẽ vuông góc với BI tại I.
Vậy AE vuông góc với BI.
Gọi \(F\) là giao điểm của \(AB\) và \(EI\)
Xét \(\Delta IAF\) và \(\Delta ICE\)
có: \(\widehat{IAF}=\widehat{ICE}=90^o\left(gt\right)\)
\(IA=IC\left(gt\right)\)
\(\widehat{AIF}=\widehat{CIE}\) (đối đỉnh)
\(\Rightarrow\Delta IAF=\Delta ICE\left(g-c-g\right)\)
\(\Rightarrow IF=IE\) (hai cạnh tương ứng)
Xét tứ giác \(AFCE\)
có: \(IA=IC\left(gt\right)\)
\(IF=IE\left(cmt\right)\)
\(\Rightarrow\) Tứ giác \(AFCE\) là hình bình hành
\(\Rightarrow AE//FC\left(1\right)\)
Xét \(\Delta BFC\)
có: \(CI\perp BF\left(gt\right)\)
\(FI\perp BC\left(gt\right)\)
\(\Rightarrow I\) là trực tâm của \(\Delta BFC\)
\(\Rightarrow BI\perp FC\left(2\right)\)
Từ \(\left(1\right)\) và \(\left(2\right)\) \(\Rightarrow AE\perp BI\left(đpcm\right)\)