Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong ΔDAB, ta có: OM // AB (gt)
(Hệ quả định lí Ta-lét) (1)
Trong ΔCAB, ta có: ON // AB (gt)
(Hệ quả định lí Ta-lét) (2)
Trong ΔBCD, ta có: ON // CD (gt)
Suy ra: (định lí Ta-lét) (3)
Từ (1), (2) và (3) suy ra:
Vậy: OM = ON
Xét tam giác ABC ta có:
ON // AB (gt)
=> \(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(1\right)\)\(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(2\right)\)
Xét tam giác ABD ta có:
OM // AB (gt)
=> \(\dfrac{OM}{AB}=\dfrac{DO}{DB}\left(2\right)\)
Vì AB // CD nên \(\dfrac{DO}{DB}=\dfrac{CO}{CA}\left(3\right)\)
Từ (1), (2) và (3) suy ra:
\(\dfrac{ON}{AB}=\dfrac{OM}{AB}=>OM=ON\)
Vậy OM = ON.
Bạn tự vẽ hình nhé
Xét \(\Delta ACD\) có OE // CD(gt)
=> \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)
Xét \(\Delta BCD\) có OF // CD (gt)
=> \(\dfrac{OF}{DC}=\dfrac{BF}{FC}\left(2\right)\)
Mặt khác AB // CD nên \(\dfrac{AO}{AC}=\dfrac{BF}{FC}\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)
=> \(\dfrac{OE}{DC}=\dfrac{OF}{DC}\) => OE = OF
"Hai đường chéo cắt nhau tại O và song song với đáy AB....". Câu này không đúng lắm. Bạn xem lại đề.
b) Do AB//CD nên áp dụng hệ quả và định lý Talet ta có:
\(\frac{AO}{OC}=\frac{OB}{OD}\)hay \(\frac{DO}{DB}=\frac{OC}{AC}\)
Xét tam giác ABD có OM//AB nên \(\frac{OM}{AB}=\frac{DO}{DB}\)
Tương tự \(\frac{ON}{AB}=\frac{CO}{CA}\)
Vậy nên \(\frac{OM}{AB}=\frac{ON}{AB}\)\(\Rightarrow OM=ON\left(đpcm\right)\)
Nguồn: Cách của cô Huyền
Xét Δ���ΔADC có ��MO // ��DC nên theo định lí Thalès ta có
����=����DCOM=ACOA. (1)
Xét Δ���ΔBCD có ��ON // ��CD nên theo định lí Thalès ta có
����=����CDON=BCBN. (2)
Xét Δ ���Δ CAB có ��ON // ��CD nên theo định lí Thalès ta có
����=����BCBN=ACAO. (3)
Từ (1)(1), (2)(2), (3)(3) suy ra ����=����=����=����DCOM=ACOA=BCBN=CDON.
Suy ra ��=��OM=ON.
Xét Δ���ΔADC có ��MO // ��DC nên theo định lí Thalès ta có
����=����DCOM=ACOA. (1)
Xét Δ���ΔBCD có ��ON // ��CD nên theo định lí Thalès ta có
����=����CDON=BCBN. (2)
Xét Δ ���Δ CAB có ��ON // ��CD nên theo định lí Thalès ta có
����=����BCBN=ACAO. (3)
Từ (1)(1), (2)(2), (3)(3) suy ra ����=����=����=����DCOM=ACOA=BCBN=CDON.
Suy ra ��=��OM=ON.