Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,3456731-19994=3436737\)
\(b,3\times31\times16+2\times24\times42+4\times27\times12\)
\(=\left(3\times16\right)\times31+\left(2\times24\right)\times42+\left(4\times12\right)\times27\)
\(=48\times31+48\times42+48\times27\)
\(=48\times\left(31+42+27\right)\)
\(=48\times100\)
\(=4800\)
\(c,\left(3^{10}+3^{12}\right):3^{10}\)
\(=3^{10}:3^{10}+3^{12}:3^{10}\)
\(=1+3^2\)
\(=1+9\)
\(=10\)
\(d,\left(2^{13}-3.2^{10}\right):2^{10}+\left(5^{10}-5^9\right):5^9\)
\(=2^{13}:2^{10}-3.2^{10}:2^{10}+5^{10}:5^9-5^9:5^9\)
\(=2^3-3+5-1\)
\(=8-3+5-1\)
\(=9\)
2S=32+33+34+....+32016
2S-S=(32+33+34+...+32016)-(3+32+33+....+32015)
S=22016-3
\(A=\frac{99.100.101}{3}=333300\)
\(B=\frac{2015.2016.2017.2018}{4}-\frac{6.7.8.9}{4}=4133639960604\)
\(C=\frac{3^{51}-1}{3}+1\)
3A= 1.2.3+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+99.100.(101-98)
3A= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100
3a= 99.100.101
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)
\(2A=1-\frac{1}{3^{100}}\)
\(A=\frac{1-\frac{1}{3^{100}}}{2}\)
\(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(B=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)
\(3B=\frac{5.3}{4.7}+\frac{5.3}{7.10}+\frac{5.3}{10.13}+...+\frac{5.3}{25.28}\)
\(3B=5\left(\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\right)\)
\(3B=5\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(3B=5\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(3B=5\cdot\frac{3}{14}=\frac{15}{14}\)
\(B=\frac{15}{14}:3=\frac{5}{14}\)
a) \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)
\(2A=1-\frac{1}{3^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{100}}}{2}\)
b) \(B=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(B=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(B=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+...+\frac{5}{25.28}\)
\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{5}{3}.\left(\frac{1}{7}-\frac{1}{10}\right)+\frac{5}{3}.\left(\frac{1}{10}-\frac{1}{13}\right)+...+\frac{5}{3}.\left(\frac{1}{25}-\frac{1}{28}\right)\)
\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(B=\frac{5}{3}.\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(B=\frac{5}{3}.\frac{3}{14}\)
\(\Rightarrow B=\frac{5}{14}\)
Ko biết
Ta chứng minh đẳng thức
\(1^3+2^3+3^3+...+n^3=\left(1+2+3+...+n\right)^2\) (1)
+ Với n=3
\(1^3+2^3++3^3=36\)
\(\left(1+2+3\right)^2=6^2=36\)
=> Đẳng thức đúng
+ Giả sử n=k đẳng thức trên cũng đúng
\(\Rightarrow1^3+2^3+3^3+...+k^3=\left(1+2+3+...+k\right)^2\)
+ Ta cần c/m với n=k+1 thì
\(1^3+2^3+3^3+...+k^3+\left(k+1\right)^3=\left[1+2+3+...+k+\left(k+1\right)\right]^2\)(2)
\(VT=1^3+2^3+3^3+...+k^3+\left(k+1\right)^3=\left(1+2+3+...+k\right)^2+\left(k+1\right)^3=\)
\(=\left[\dfrac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3=\dfrac{k^2\left(k+1\right)^2+4\left(k+1\right)^3}{4}=\)
\(=\dfrac{\left(k+1\right)^2\left[k^2+4k+4\right]}{4}=\dfrac{\left(k+1\right)^2\left(k+2\right)^2}{4}\)
\(VP=\left[1+2+3+...+k+\left(k+1\right)\right]^2=\)
\(=\left\{\dfrac{\left(k+1\right)\left[\left(k+1\right)+1\right]}{2}\right\}^2=\dfrac{\left(k+1\right)^2\left(k+2\right)^2}{4}\)
Như vậy (2) có VT=VP => (2) đúng
Theo nguyên lý phương pháp quy nạp => (1) đúng
\(\Rightarrow1^3+2^3+3^3+...+10^3=\left(1+2+3+...+10\right)^2=\)
\(=\left[\dfrac{10\left(10+1\right)}{2}\right]^2=3025\)