Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(\Rightarrow A< 1-\frac{1}{9}=\frac{8}{9}\)(1)
Lại có: \(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(\Rightarrow A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(A>\frac{1}{2}-\frac{1}{10}=\frac{2}{5}\)(2)
Từ (1) và (2), suy ra: \(\frac{2}{5}< A< \frac{8}{9}\)
\(S=\frac{3}{1^2\cdot2^2}+\frac{5}{2^2\cdot3^2}+.....+\frac{19}{9^2\cdot10^2}\)
\(\Rightarrow S=\frac{3}{1\cdot4}+\frac{5}{4\cdot9}+....+\frac{19}{81\cdot100}\)
\(\Rightarrow S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+....+\frac{1}{81}-\frac{1}{100}\)
\(\Rightarrow S=1-\frac{1}{100}=\frac{99}{100}< 1\left(ĐPCM\right)\)