K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2023

N=1

1 tháng 5 2023

N=1.2+2.3+...+198.199/1.2+2.3+...+198.199

a: \(\dfrac{5}{13}\left(\dfrac{6}{29}-\dfrac{26}{39}\right)-\dfrac{6}{29}\cdot\left(\dfrac{5}{13}-\dfrac{29}{6}\right)\)

\(=\dfrac{5}{13}\cdot\dfrac{6}{29}-\dfrac{5}{13}\cdot\dfrac{26}{39}-\dfrac{6}{13}\cdot\dfrac{5}{13}+\dfrac{6}{29}\cdot\dfrac{29}{6}\)

\(=\dfrac{-5}{39}\cdot2+1=1-\dfrac{10}{39}=\dfrac{29}{39}\)

b: \(\dfrac{1\cdot198+2\cdot197+3\cdot196+...+198\cdot1}{1\cdot2+2\cdot3+...+198\cdot199}\)

\(=\dfrac{1\left(199-1\right)+2\left(199-2\right)+...+198\cdot\left(199-198\right)}{1\left(1+1\right)+2\left(1+2\right)+...+198\left(1+198\right)}\)

\(=\dfrac{199\left(1+2+...+198\right)-\left(1^2+2^2+...+198^2\right)}{\left(1+2+...+198\right)+\left(1^2+2^2+...+198^2\right)}\)

\(=\dfrac{199\cdot\dfrac{198\cdot199}{2}-\dfrac{198\cdot\left(198+1\right)\cdot\left(2\cdot198+1\right)}{6}}{198\cdot\dfrac{199}{2}+\dfrac{198\left(198+1\right)\left(2\cdot198+1\right)}{6}}\)

\(=\dfrac{3\cdot198\cdot199^2-198\cdot199\cdot397}{6}:\dfrac{3\cdot198\cdot199+198\cdot199\cdot397}{6}\)

\(=\dfrac{198\cdot199\left(3\cdot199-397\right)}{198\cdot199\left(3+397\right)}\)

\(=\dfrac{200}{400}=\dfrac{1}{2}\)

13 tháng 1 2024

pls mai mình phải nộp rồi

 

30 tháng 4 2023

M=1 nha bạn

27 tháng 4 2023
Gọi A=1+(1+2)+(1+2+3)+...+(1+2+3+...+198) A=1.198+2.197+3.196+..+1.198 => M=1                    
10 tháng 6 2017

1)Tính

a)\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+..........+\dfrac{1}{9.10}\)

=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}\)

\(=\dfrac{9}{10}\)

b)\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.........+\dfrac{1}{99.100}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..............+\dfrac{1}{99}-\dfrac{1}{100}\)

\(=1-\dfrac{1}{100}\)

\(=\dfrac{99}{100}\)

2) tìm x

\(a\)) \(\dfrac{2}{5}+\dfrac{4}{5}x-\dfrac{7}{5}\)\(=\dfrac{9}{5}\)

\(\dfrac{4}{5}x+\dfrac{7}{5}=\dfrac{9}{5}-\dfrac{2}{5}\)

\(\dfrac{4}{5}x+\dfrac{7}{5}=\dfrac{7}{5}\)

\(\dfrac{4}{5}x=\dfrac{7}{5}-\dfrac{7}{5}\)

\(\dfrac{4}{5}x=0\)

\(x=0:\dfrac{4}{5}\)

\(x=0\)

b)\(\dfrac{2}{5}x-\dfrac{6}{4}=\dfrac{8}{5}\)

\(\dfrac{2}{5}x=\dfrac{8}{5}+\dfrac{6}{4}\)

\(\dfrac{2}{5}x=\dfrac{31}{10}\)

\(x=\dfrac{31}{10}:\dfrac{2}{5}\)

\(x=\dfrac{31}{4}\)

10 tháng 6 2017

1. Tính:

a. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{9.10}\)

= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

= \(\dfrac{1}{1}-\dfrac{1}{10}\)

= \(\dfrac{10}{10}-\dfrac{1}{10}\)

= \(\dfrac{9}{10}\)

b. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)

= \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

= \(\dfrac{1}{1}-\dfrac{1}{100}\)

= \(\dfrac{100}{100}-\dfrac{1}{100}\)

= \(\dfrac{99}{100}\)

2. Tìm x, biết:

a. \(\dfrac{2}{5}+\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{9}{5}\)

\(\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{9}{5}-\dfrac{2}{5}\)

\(\dfrac{4}{5}x-\dfrac{7}{5}=\dfrac{7}{5}\)

\(\dfrac{4}{5}x=\dfrac{7}{5}+\dfrac{7}{5}\)

\(\dfrac{4}{5}x=\dfrac{14}{5}\)

\(x=\dfrac{14}{5}:\dfrac{4}{5}\)

\(x=\dfrac{14}{5}.\dfrac{5}{4}\)

\(x=14.\dfrac{1}{4}\)

\(x=\dfrac{14}{4}\)

Vậy \(x=\dfrac{14}{4}\)

b. \(\dfrac{2}{5}x-\dfrac{6}{4}=\dfrac{8}{5}\)

\(\dfrac{2}{5}x=\dfrac{8}{5}+\dfrac{6}{4}\)

\(\dfrac{2}{5}x=\dfrac{32}{20}+\dfrac{30}{20}\)

\(\dfrac{2}{5}x=\dfrac{62}{20}\)

\(\dfrac{2}{5}x=\dfrac{31}{10}\)

\(x=\dfrac{31}{10}:\dfrac{2}{5}\)

\(x=\dfrac{31}{10}.\dfrac{5}{2}\)

\(x=\dfrac{31}{2}.\dfrac{2}{2}\)

\(x=\dfrac{31}{2}.1\)

\(x=\dfrac{31}{2}\)

Vậy \(x=\dfrac{31}{2}\)

bài này mk tự làm ko sao chép trên mạnghihi

nếu thấy đúng thì tick đúng cho mk nhavui

6 tháng 4 2018

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{26.27}\)

=\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{26}-\dfrac{1}{27}\)

=\(1-\dfrac{1}{27}\)

=\(\dfrac{26}{27}\)

Bài 5:

a) Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\)

\(\Leftrightarrow3\cdot A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\right)\)

\(\Leftrightarrow3A=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+9\cdot10\cdot\left(11-8\right)\)

\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+8\cdot9\cdot10-8\cdot9\cdot10+9\cdot10\cdot11\)

\(\Leftrightarrow3\cdot A=9\cdot10\cdot11=90\cdot11=990\)

hay A=330

Vậy: A=330

28 tháng 7 2017

=> 3.( \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{100.101}\))

=> 3.(\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+...+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\))

=> 3.(\(\dfrac{1}{1}\)-\(\dfrac{1}{101}\))

=> 3. \(\dfrac{100}{101}\)

=> \(\dfrac{300}{101}\)

Tick cho mk nhé, chúc bạn học tốtleu

28 tháng 7 2017

\(\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{100.101}\)

= \(3.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{100.101}\right)\)

= \(3.\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...\dfrac{1}{100}-\dfrac{1}{101}\right)\).

= \(3.\left(1-\dfrac{1}{101}\right)\)= \(3.\dfrac{100}{101}=\dfrac{300}{101}\).

15 tháng 6 2018

Giải:

b) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}\)

\(=\dfrac{1}{1}-\dfrac{1}{2009}\)

\(=\dfrac{2008}{2009}\)

c) \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{4}{7.10}+...+\dfrac{3}{94.97}\)

\(=\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\)

\(=\dfrac{1}{1}-\dfrac{1}{97}\)

\(=\dfrac{96}{97}\)

Vậy ...

Các câu sau tương tự

16 tháng 6 2018

b, \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{2008.1009}\)

\(=\)\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{2008}-\dfrac{1}{2009}\)

\(=\dfrac{1}{1}-\dfrac{1}{2009}=\dfrac{2009}{2009}-\dfrac{1}{2009}=\dfrac{2008}{2009}\)

Nhận xét thấy:

\(\dfrac{1}{1.2}\)= 1-\(\dfrac{1}{2}\); \(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\);...

Ta có

A= 1-\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)

A= 1- \(\dfrac{1}{6}\)

A= \(\dfrac{5}{6}\)

Vậy A= \(\dfrac{5}{6}\)

26 tháng 4 2017

CAU NAY RAT DE NHA BAN

A=\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)

A=1-\(\dfrac{1}{6}\)

=>A=\(\dfrac{5}{6}\)