\(\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{100.101}\)=?

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

=> 3.( \(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+\(\dfrac{1}{3.4}\)+...+\(\dfrac{1}{100.101}\))

=> 3.(\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+...+\(\dfrac{1}{100}\)-\(\dfrac{1}{101}\))

=> 3.(\(\dfrac{1}{1}\)-\(\dfrac{1}{101}\))

=> 3. \(\dfrac{100}{101}\)

=> \(\dfrac{300}{101}\)

Tick cho mk nhé, chúc bạn học tốtleu

28 tháng 7 2017

\(\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{100.101}\)

= \(3.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{100.101}\right)\)

= \(3.\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...\dfrac{1}{100}-\dfrac{1}{101}\right)\).

= \(3.\left(1-\dfrac{1}{101}\right)\)= \(3.\dfrac{100}{101}=\dfrac{300}{101}\).

29 tháng 4 2017

\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{100.101}\)\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}\)\(=\dfrac{1}{2}-\dfrac{1}{101}=\dfrac{99}{202}\)

30 tháng 4 2017

CM công thức :

\(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{n+a}{n\left(n+a\right)}-\dfrac{n}{n\left(n+a\right)}=\dfrac{a}{n\left(n+a\right)}\)Nhận xét :

\(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{100.101}=\dfrac{1}{100}-\dfrac{1}{101}\)

\(\Rightarrow\)\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}\)

\(\dfrac{\Rightarrow1}{2}-\dfrac{1}{101}\)

=\(\dfrac{101}{202}-\dfrac{2}{202}=\dfrac{99}{202}\)

~ chúc bn học tốt~haha

19 tháng 3 2024

A = \(\dfrac{3}{4}\).\(\dfrac{8}{9}\).\(\dfrac{15}{16}.\)\(\dfrac{24}{25}\)...\(\dfrac{9800}{9801}\)

A = \(\dfrac{1.3}{2.2}\).\(\dfrac{2.4}{3.3}\).\(\dfrac{3.5}{4.4}\)...\(\dfrac{98.100}{99.99}\)

A = \(\dfrac{1}{2}.\dfrac{100}{99}\)

A = \(\dfrac{50}{99}\) 

B = \(\dfrac{1.2+2.3+3.4+...+98.99}{98.99.100}\)

Đặt tử số là C Thì 

C = 1.2 + 2.3 + 3.4 +...+ 98.99

C = \(\dfrac{1}{3}\).(1.2.3 + 2.3.3 + 3.4.3 + ...+ 98.99.3)

C = \(\dfrac{1}{3}\).[1.2.3 + 2.3.(4-1) + 3.4.(5-2) +...+ 98.99.(100-97)]

C = \(\dfrac{1}{3}\).[1.2.3 -1.2.3+2.3.4- 2.3.4 + 2.4.5 - .... - 97.98.99 + 98.99.100]

C = \(\dfrac{1}{3}\).98.99.100

B = \(\dfrac{\dfrac{1}{3}.98.99.100}{98.99.100}\) 

B = \(\dfrac{1}{3}\) = \(\dfrac{33}{99}\) < \(\dfrac{50}{99}\) = A

Vậy B < A

 

a: \(B=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2007}-\dfrac{1}{2008}=1-\dfrac{1}{2008}=\dfrac{2007}{2008}\)

b: \(Q=\dfrac{7}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{2009\cdot2011}\right)\)

\(=\dfrac{7}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)

\(=\dfrac{7}{2}\cdot\dfrac{2010}{2011}\simeq3,50\)

1 tháng 5 2017

\(\dfrac{\left(1.2+2.3+3.4+...+98.99\right).x}{26950}=12\dfrac{6}{7}:\dfrac{-3}{2}\\ \Rightarrow\left(1.2+2.3+3.4+...+98.99\right).x:26950=\dfrac{90}{7}:\dfrac{-3}{2}\\ \left(1.2+2.3+3.4+...+98.99\right).x:26950=\dfrac{-60}{7}\\ \left(1.2+2.3+3.4+...+98.99\right).x=\dfrac{-60}{7}.26950\\ \left(1.2+2.3+3.4+...+98.99\right).x=-231000\\ \left\{\left[99.98.\left(98+2\right)\right]:3\right\}.x=-231000\\ 323400x=-231000\\ x=-231000:323400\\ x=\dfrac{-5}{7}\)

1 tháng 5 2017

Đặt A=1.2+2.3+...+98.99

=>3A=1.2.3+2.3.(4-1)+...+98.99.(100-97)

=1.2.3-1.2.3+2.3.4-...-97.98.99+98.99.100

=98.99.100

=>A=98.99.100:3=323400

=>\(\dfrac{323400x}{26950}=\dfrac{90}{7}\cdot\dfrac{2}{-3}\)

<=>12x=\(-\dfrac{60}{7}\)

<=>x=\(-\dfrac{60}{12.7}\)

<=>x=\(-\dfrac{5}{7}\)

Vậy...

22 tháng 8 2017

\(A=\dfrac{1}{1.2}-\dfrac{1}{1.2.3}+\dfrac{1}{2.3}-\dfrac{1}{2.3.4}+\dfrac{1}{3.4}-\dfrac{1}{3.4.5}+\dfrac{1}{99.100}-\dfrac{1}{99.100.101}\)

\(A=\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)-\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{99.100.101}\right)\)

\(A=\left(1-\dfrac{1}{100}\right)-\left(\dfrac{\dfrac{1}{1.2}-\dfrac{1}{100.101}}{2}\right)\)

Bấm máy nha

22 tháng 8 2017

\(B=\dfrac{5}{1.2.3.4}+\dfrac{5}{2.3.4.5}+\dfrac{5}{3.4.5.6}+...+\dfrac{5}{98.99.100.101}\)

\(B=\dfrac{5}{3}.\left(\dfrac{3}{1.2.3.4}+\dfrac{3}{2.3.4.5}+...+\dfrac{3}{98.99.100.101}\right)\)

\(B=\dfrac{5}{3}.\left(\dfrac{4-1}{1.2.3.4}+\dfrac{5-2}{2.3.4.5}+...+\dfrac{101-98}{98.99.100.101}\right)\)

\(B=\dfrac{5}{3}.\left(\dfrac{4}{1.2.3.4}-\dfrac{1}{1.2.3.4}+\dfrac{5}{2.3.4.5}-\dfrac{2}{2.3.4.5}+...+\dfrac{101}{98.99.100.101}-\dfrac{98}{98.99.100.101}\right)\)

\(B=\dfrac{5}{3}.\left(\dfrac{1}{1.2.3}-\dfrac{1}{99.100.101}\right)\)

\(B=\dfrac{5}{3}.\dfrac{166649}{999900}\approx0,3\)

1. So sánh: a. \(\dfrac{-18}{38}\) và \(\dfrac{-32}{68}\) b. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\) với 1. 2. Tìm X, biết: a. \(-\dfrac{11}{12}\)x + \(\dfrac{3}{4}\)= \(-\dfrac{1}{6}\) b. x - 43= (57-x) - 50 c. 2x-(21.3.105-105.61)= -11.26 d. \(\left|x+1\right|\)=3 e. \(\left|2x+3\right|\)=5 3. Tính: a. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009} \) b. \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\) c....
Đọc tiếp

1. So sánh: a. \(\dfrac{-18}{38}\)\(\dfrac{-32}{68}\)

b. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\) với 1.

2. Tìm X, biết:

a. \(-\dfrac{11}{12}\)x + \(\dfrac{3}{4}\)= \(-\dfrac{1}{6}\)

b. x - 43= (57-x) - 50

c. 2x-(21.3.105-105.61)= -11.26

d. \(\left|x+1\right|\)=3

e. \(\left|2x+3\right|\)=5

3. Tính:

a. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009} \)

b. \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

c. \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\)

4. Chu vi của một sân hình chữ nhật là 48m. Biết chiều dài của sân bằng 140% chiều rộng. Tính diện tích của sân hình chữ nhật đó. (giải có lời giải và phép tính đầy đủ).

5. Trên cùng một nửa mặt phẳng có bờ chứa tia Ot, vẽ các tia Om và On sao cho góc tOm = 45 độ, góc tOn = 135 độ.

a. Trong 3 tia Ot, Om, On tia nào nằm giữa hai tia còn lại? Vì sao?

b. Tính số đo góc mOn. (ko cần vẽ hình)

1

Câu 2: 

a: =>-11/12x=-1/6-3/4=-2/12-9/12=-11/12

=>x=1

b: =>x-42=57-x-50=7-x

=>2x=49

hay x=49/2

d: =>x+1=3 hoặc x+1=-3

=>x=2 hoặc x=-4

e: =>2x+3=5 hoặc 2x+3=-5

=>2x=2 hoặc 2x=-8

=>x=1 hoặc x=-4

26 tháng 3 2017

=\(\dfrac{2^2.2^2.3^2.....9^2}{1.2^2.3^2.4^2....9^2.10}\)=\(\dfrac{2^2}{10}\)=\(\dfrac{2}{5}\)

23 tháng 6 2017

a) A = \(\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}.\dfrac{4^2}{4.5}\)

A = \(\dfrac{1.1}{1.2}.\dfrac{2.2}{2.3}.\dfrac{3.3}{3.4}.\dfrac{4.4}{4.5}\)

A = \(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}\)= \(\dfrac{1}{5}\)

b) B = \(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}\)

B = \(\dfrac{2.3.4.5}{1.2.3.4}.\dfrac{2.3.4.5}{3.4.5.6}\)= \(\dfrac{5}{3}\)

30 tháng 6 2017

\(\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...............+\dfrac{2}{2008.2009}\)

\(=2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+................+\dfrac{1}{2008.2009}\right)\)

\(=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.................+\dfrac{1}{2008}-\dfrac{1}{2009}\right)\)

\(=2\left(1-\dfrac{1}{2009}\right)\)

\(=2.\dfrac{2008}{2009}=\dfrac{4016}{2009}\)