K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2023

\(\left(x^2-6x+9\right)+15\left(x^2-6x+10\right)=1\)

\(\Leftrightarrow\left(x-3\right)^2+15\left[\left(x-3\right)^2+1\right]=1\)

\(\Leftrightarrow16\left(x-3\right)^2+15=1\)

\(\Leftrightarrow16\left(x-3\right)^2=-14\)

=> Phương trình vô nghiệm 

1 tháng 2 2023

\(\left(x^2-6x+9\right)-15\left(x^2-6x+10\right)=1\)

Đặt : \(x^2-6x+9=\left(x-3\right)^2=t\) thay vào pt ta được :

\(t^2-15\left(t+1\right)=1\)

\(\Leftrightarrow t^2-15t-16=0\)

\(\Leftrightarrow\left(t+1\right)\left(t-16\right)=0\)

\(\Leftrightarrow t=\left\{{}\begin{matrix}16\\-1\end{matrix}\right.\)

với : \(t=-1\) thì \(\left(x-3\right)^2=-1\)

\(\Rightarrow ptvonghiem\)

Với : \(t=16\) thì \(\left(x-3\right)^2=16\)

\(\Leftrightarrow x\in\left\{{}\begin{matrix}7\\-1\end{matrix}\right.\)

\(vay...\)