Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Xác định bài toán (0,5đ)
- Input: Ba số dương a, b và c
- Output: Kiểm tra a, b, c có là ba cạnh của một tam giác hay không.
b. Ý tưởng: Ba số dương a, b và c là độ dài các cạnh của một tam giác khi và chỉ khi a + b > c, b + c > a, c + a > b. (0.5đ)
c. Thuật toán (2đ)
Bước 1: Nhập ba số dương a, b và c
Bước 2 : Nếu a + b > c và b + c > a và c + a > b thì thông báo ba số a, b và c tạo thành 3 cạnh của tam giác ngược lại thông báo ba số a, b và c không tạo thành ba cạnh của tam giác.
Bước 3: Kết thúc thuật toán
a:
#include <bits/stdc++.h>
using namespace std;
long long n,x,i,t;
int main()
{
cin>>n;
t=0;
for (i=1; i<=n; i++)
{
cin>>x;
t=t+x;
}
cout<<t;
return 0;
}
#include <bits/stdc++.h>
using namespace std;
long long n,i,x,nn;
int main()
{
cin>>n;
cin>>x;
nn=x;
for (i=1; i<n; i++)
{
cin>>x;
nn=min(nn,x);
}
cout<<nn;
return 0;
}
a)
Input: Dãy n số nguyên
Output: Đếm xem trong dãy đó có bao nhiêu số nguyên dương
b)
Bước 1: Nhập n và nhập dãy số
Bước 2: dem←0; i←1;
Bước 3: Nếu a[i]>0 thì dem←dem+1;
Bước 4: i←i+1;
Bước 5: Nếu i<=n thì quay lại bước 3
Bước 6: Xuất dem
Bước 7: Kết thúc
def count_pairs_divisible_by_3(arr):
n = len(arr)
# Đếm số lượng số dư khi chia cho 3
count_mod = [0, 0, 0]
for num in arr:
count_mod[num % 3] += 1
# Trường hợp 0: Số dư 0 + Số dư 0
count_pairs = count_mod[0] * (count_mod[0] - 1) // 2
# Trường hợp 1: Số dư 1 + Số dư 2
count_pairs += count_mod[1] * count_mod[2]
# Trường hợp 2: Số dư 1 + Số dư 1 hoặc Số dư 2 + Số dư 2
count_pairs += count_mod[1] * (count_mod[1] - 1) // 2
count_pairs += count_mod[2] * (count_mod[2] - 1) // 2
return count_pairs
# Thử nghiệm
arr = [3, 5, 7, 9, 11, 13, 15]
result = count_pairs_divisible_by_3(arr)
print(f"Số lượng cặp số có tổng chia hết cho 3 là: {result}"
#include <bits/stdc++.h>
using namespace std;
long long n,i;
int main()
{
cin>>n;
for (i=1; i<=n; i++)
if (n%i==0) cout<<i<<" ";
return 0;
}
B
A