K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

Kí hiệu: a chia hết cho b được kí hiệu là a || b

Chứng minh \(A=a\left(a+2\right)\left(25a^2-1\right)\text{ || }24\)

Hay A || 3 và  A || 8.

+ Chứng minh A || 3

\(A=a\left(a+2\right)\left(5a+1\right)\left(5a-1\right)\)

Nếu a = 3k (k nguyên)  thì A || 3
Nếu a = 3k + 1 thì a + 2 = 3k + 3 = 3.(k+1) || 3 nên A || 3
Nếu a = 3k + 2 thì 5a - 1 = 5.(3k + 2) - 1 = 3.(5k + 3) || 3 nên A || 3

+Chứng minh A || 8

Nếu a = 2k thì a.(a + 2) = 2k.(2k + 2) = 4k.(k + 1)
Mà k.(k + 1) || 2 nên 4k.(k + 1) || 8 nên A || 8

Nếu a = 2k + 1, a có 2 dạng là 4k + 1 và 4k + 3
Nếu a = 4k + 1 thì (5a - 1).(5a + 1) = (20k + 4).(20k + 6) = 8.(5k + 1).(10k + 3) || 8 nên A || 8
Nếu a = 4k + 3 thì (5a - 1).(5a + 1) = (20k + 14).(20k + 16) = 8.(10k + 7).(5k + 4) || 8 nên A || 8

15 tháng 8 2016

_rõ ràng 62 =36. 36-1 =35 không chia hết cho 24

15 tháng 8 2016

\(a^2-1=?\)

\(\Rightarrow a=2-1=1\)

vay a =\(a^1\)

do do 1/a

6 tháng 1 2015

Bài 1: 

a) P=(a+5)(a+8) chia hết cho 2

Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Vậy P luôn chia hết cho 2 với mọi a

b) Q= ab(a+b) chia hết cho 2

Nếu a chẵn => ab(a+b) chia hết cho 2

Nếu b chẵn => ab(a+b) chia hết cho 2

Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2

Vậy Q luôn chia hết cho 2 với mọi a và b

 

10 tháng 7 2015

bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).

Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10                   (1)

ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2

=> 5n(n-1)n(n+1) chia hết cho 10                                                                     (2)

Từ (1) và (2) => n5- n chia hết cho 10

14 tháng 12 2016

A = p2 - 1 = (p - 1)(p + 1)

p là số nguyên tố > 3 => p lẻ => p-1; p+1 chẵn => A chia hết cho 8 với mọi p là số nguyên tố > 3 (1)

p là số nguyên tố > 3 => p = 3k+1; 3k + 2

+) p= 3k+1 => A = 3k(3k+2) chia hết cho 3

+) p = 3k+2 => A = (3k+1)(3k+3) = 3(k+1)(3k+1) chia hết cho 3

=> A chia hết cho 3 với mọi p là số nguyên tố > 3 (2)

8 và 3 là 2 số nguyên tố cùng nhau (3)

Từ (1); (2); (3) => A chia hết cho 24 với mọi p là số nguyên tố lớn hơn 3 (đpcm)