Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = p2 - 1 = (p - 1)(p + 1)
p là số nguyên tố > 3 => p lẻ => p-1; p+1 chẵn => A chia hết cho 8 với mọi p là số nguyên tố > 3 (1)
p là số nguyên tố > 3 => p = 3k+1; 3k + 2
+) p= 3k+1 => A = 3k(3k+2) chia hết cho 3
+) p = 3k+2 => A = (3k+1)(3k+3) = 3(k+1)(3k+1) chia hết cho 3
=> A chia hết cho 3 với mọi p là số nguyên tố > 3 (2)
8 và 3 là 2 số nguyên tố cùng nhau (3)
Từ (1); (2); (3) => A chia hết cho 24 với mọi p là số nguyên tố lớn hơn 3 (đpcm)
Có: p2 - 1 = p2 + p - p - 1 = (p2+p) - (p+1) = p(p+1) - (p+1) = (p-1).(p+1)
- p là số nguyên tố lớn hơn 3 => p-1 và p+2 là 2 số chẵn liên tiếp.=> (p-1)(p+1) \(⋮\) 8 (1)
- p là số nguyên tố lớn 3 => p có dạng 3k+1;3k+2
Với p = 3k+1 => (p-1)(p+1) = (3k+1-1)(3k+2+1) = 3k(p+1) \(⋮\) 3 (2)
Với p = 3k+2 => (p-1)(p+1) = (p-1)(3k+2+1) = (p-1)(k+1).3 \(⋮\) 3 (3)
Từ (1)(2)(3) => p2 - 1 \(⋮\) 3;8
Mà (3;8) = 1 => p2 - 1 \(⋮\) 24
lớp 9 học Hđt r` p2-12=(p-1)(p+1) luôn, cách làm k phù hợp vs lừa tuổi
Kí hiệu: a chia hết cho b được kí hiệu là a || b
Chứng minh \(A=a\left(a+2\right)\left(25a^2-1\right)\text{ || }24\)
Hay A || 3 và A || 8.
+ Chứng minh A || 3
\(A=a\left(a+2\right)\left(5a+1\right)\left(5a-1\right)\)
Nếu a = 3k (k nguyên) thì A || 3
Nếu a = 3k + 1 thì a + 2 = 3k + 3 = 3.(k+1) || 3 nên A || 3
Nếu a = 3k + 2 thì 5a - 1 = 5.(3k + 2) - 1 = 3.(5k + 3) || 3 nên A || 3
+Chứng minh A || 8
Nếu a = 2k thì a.(a + 2) = 2k.(2k + 2) = 4k.(k + 1)
Mà k.(k + 1) || 2 nên 4k.(k + 1) || 8 nên A || 8
Nếu a = 2k + 1, a có 2 dạng là 4k + 1 và 4k + 3
Nếu a = 4k + 1 thì (5a - 1).(5a + 1) = (20k + 4).(20k + 6) = 8.(5k + 1).(10k + 3) || 8 nên A || 8
Nếu a = 4k + 3 thì (5a - 1).(5a + 1) = (20k + 14).(20k + 16) = 8.(10k + 7).(5k + 4) || 8 nên A || 8